

... for a brighter future

UChicago ► Argonne_{uc}

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC

Compact Potentiometric NO_x Sensor

Dileep Singh Nuclear Engineering Division June 10, 2010

Coworkers: K. Pappacena and J. Routbort (Argonne National Lab) P. Dutta, J. Spirig, and J. C. Yang (Ohio State University)

> Project ID # PM 023

Vehicle Technologies – Annual Review – June 7-11, 2010

Sponsored by Propulsion Systems Materials

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

Project start FY08
Project end FY12
50% complete

Budget

Total project – \$390K
 FY09 = \$200 K (DOE)
 FY10 = \$150 K (DOE)

Barriers

Critical need for high temperature sensors to monitor combustion gases (NO_x , O_2 , CO, CO_2) for an internal combustion engine to optimize the combustion process (maximize fuel efficiency) and minimize pollutants

- ⇒ accurate, real-time, and cost-effective monitoring
 ⇒ sensing at close proximity to the combustion process
 for accurate monitoring
- \Rightarrow require internal reference gas, thus eliminating the need for pumping an external reference gas
- ⇒ need a sensor package that is durable and can withstand repeated high temperature cycling

Partners

- Marathon Sensors
- McDaniel Ceramics
- Integrated Fuel Technology

This project complements the overall goal for fuel efficiency for vehicle combustion systems

Relevance

Optimum operation of vehicle combustion system *will increase fuel efficiency and reduce emissions*, both are high priority goals for the vehicle technology program

Efficiency of the combustion process can be monitored by the make-up of the combustion exhaust gases (O_2 , NO_x , CO, CO_2)

Most state-of the-art gas sensors require external reference gas source and are expensive

Compact NO_x sensor (or multiple sensing capability) with an internal reference can be placed close to the combustion process and will provide more rapid and accurate information of the gas compositional make-up

Need for a compact, reliable, inexpensive NO_x sensor technology that is amenable for mass production

Objectives

Modify and develop the compact oxygen sensor design to sense NO_x concentrations at ppm levels

Fabricate compact NO_x sensor package using the plastic deformation joining technology; optimize joining conditions, electrode formulations, sensing materials

Test the fabricated sensors for sensitivity, selectivity, stability, cross interference from other gases, etc. In addition, explore options for expanding the sensing capabilities to other combustion gases

In collaboration with an industrial partner, demonstrate the sensor performance in an actual combustion environment and transfer technology to an OEM or the end user

Approach

First develop a high-temperature oxygen sensor and subsequently modify it to sense NO_x concurrently

Sensor design is based on relatively simple and well-known electrochemical principles. It is a closed end device made from oxygen ion conducting partially stabilized zirconia ceramic (YSZ). At elevated temperatures, differences in oxygen partial pressures across the ceramic produces a voltage that can be measured by attaching electrodes

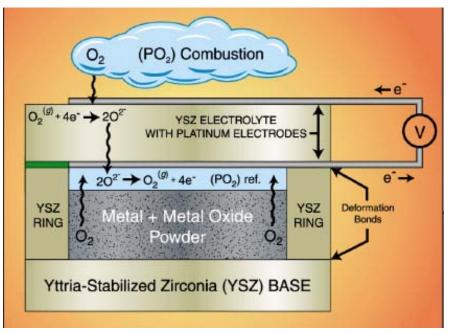
Develop high temperature plastic joining technology to join the YSZ sensor components to produce a leak–proof package. This allows creating a known internal reference gas atmosphere at the measuring temperatures

Using appropriate filter(s) and sensing materials, modify the oxygen sensor such that NO_x concentrations are measured

Conduct extensive tests to validate the performance of the sensor

Milestones

FY09


- Develop strategy to convert oxygen sensor to measure No_{x} and O_{2}
- Demonstrate NO_x sensing capabilities
- Conduct performance evaluation of the NO_x sensor, including long-term behavior and cross interference with O₂

FY10

- Develop high-temperature electrically conducting ceramic electrode material to replace expensive Pt
- Demonstrate electrical properties of the ceramic electrode
- Demonstrate joining of ceramic electrode to sensor package material (zirconia)
- Incorporate ceramic electrode in the sensor package and evaluate sensor performance
- Initiate collaborations with industry

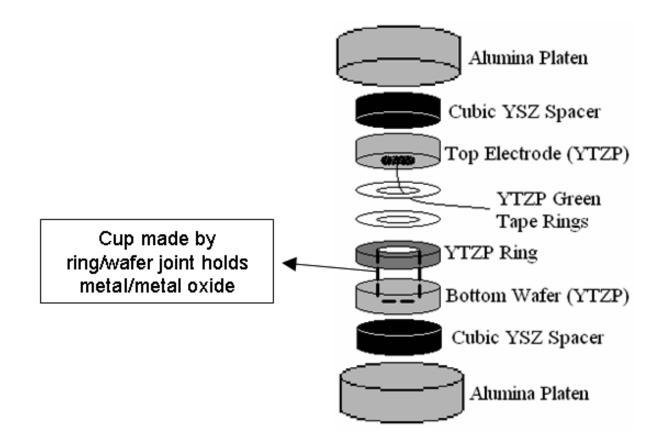
Basic Package Design to Sense O₂

•At T>450° C, a specific oxygen partial pressure $(pO_2)^{int.}$ from M+MO is generated within the sensor package.

• Because of the difference in the oxygen partial pressures between combustion environment, $(pO_2)^{combustion}$, and $(pO_2)^{int.}$ a voltage, E, as give by the equation below, is generated across the YSZ electrolyte:

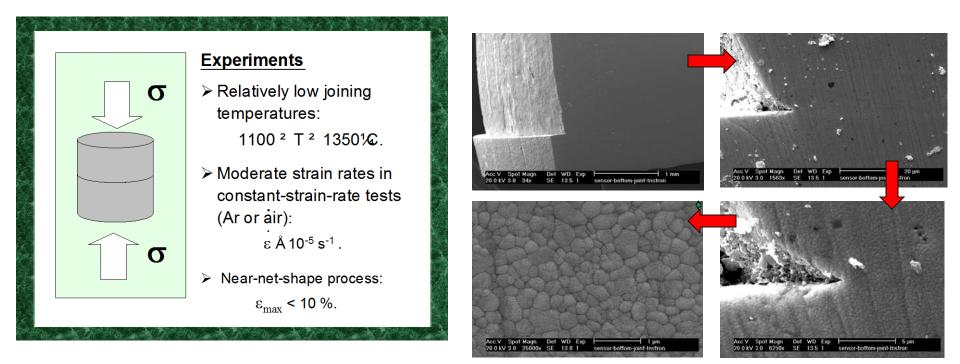
$$E = \frac{RT}{4F} \ln \frac{(PO_2)^{combustion}}{(PO_2)^{\text{int.}}}$$

R = gas constant

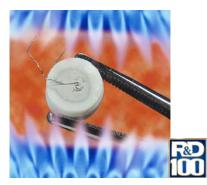

T = absolute temperature

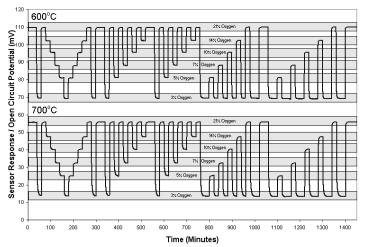
F = Faraday's constant

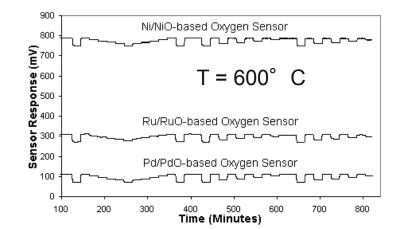
Knowing the temperature, metal/metal oxide mixture, and voltage, oxygen concentration in combustion environment can be determined

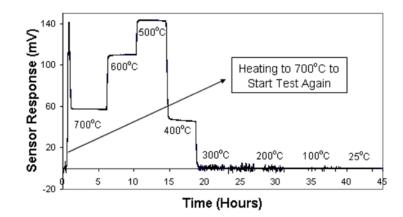

Components of Basic Sensor Package

Sensor components are stacked and joined in a one-step process


Joining of Sensor Package YSZ Components

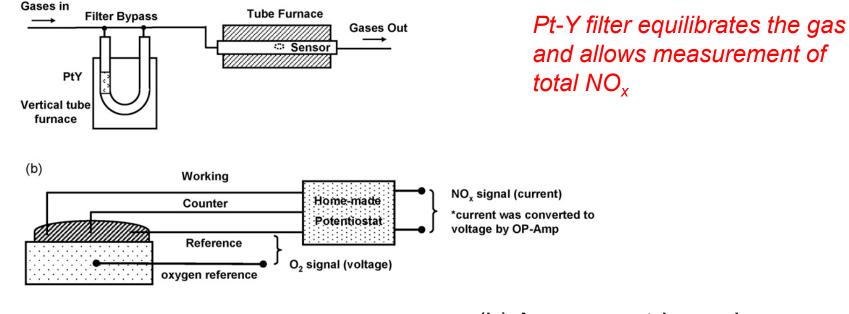

Scanning electron microscopy images of the joint interface shows no porosity; air-tight durable seal

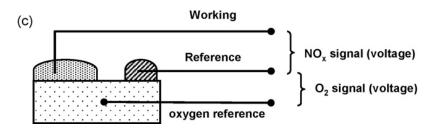

Performance of the Oxygen Sensor


Fabricated Sensor

High sensitivity and fast response time

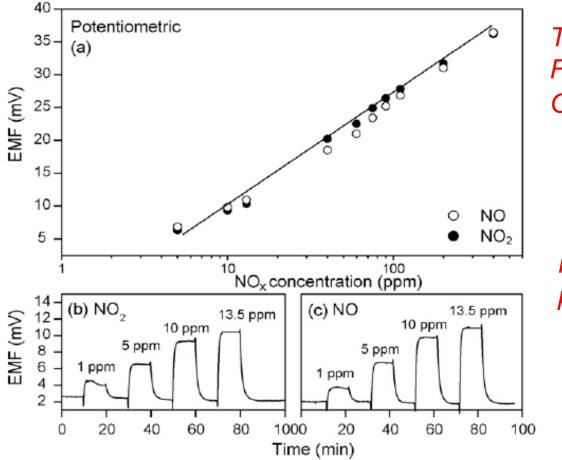
Output signal for various metal/metal oxide mixtures




Sensor performance repeatable, trace of four runs overlapping

NO_x Sensor Test Set-up

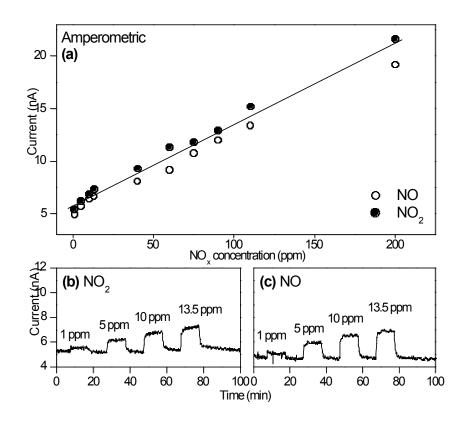
(a)



(b) Amperometric mode

(c) Potentiometric mode

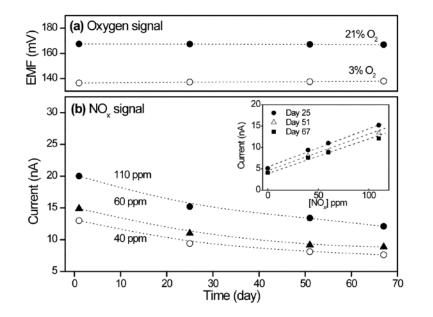
Sensitivity of the Sensor to NO_x in Potentiometric Mode



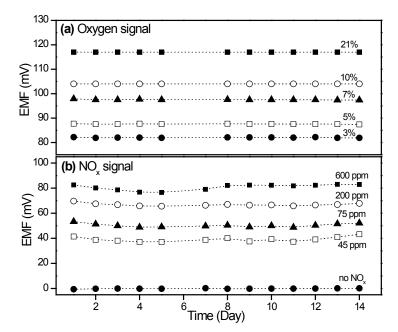
Test Temperature = $600^{\circ}C$ Filter Temperature = $400^{\circ}C$ O_2 level 3% in gas

Response transients for 1-13.5 ppm of NO and NO_2

Sensitivity of the Sensor to NO_x in Amperometric Mode



Test Temperature = $600^{\circ}C$ Filter Temperature = $400^{\circ}C$ O_2 level 3% in gas


Response transients for 1-13.5 ppm of NO and NO_2

Long Term Sensor Performance

Potentiometric Mode

Path Forward

- Develop electrically conducting ceramics electrode and evaluate its electrical properties and joining characteristics with zirconia
- Include the ceramic electrode in the sensor package design and fabricate a sensor
 - characterize the sensor performance
 - establish durability of the sensor
- Develop strategies to include CO and CO₂ sensing on the current sensor platform

Initiate discussions with OEMs for technology demonstration and eventual transfer of technology

Conclusions

- Based on YSZ ceramic, a basic sensor package design developed
- Using the the sensor package design, an oxygen sensor with an internal reference developed and demonstrated
- Modifications made to the basic oxygen sensor design to sense NO_x
- Modified oxygen sensor design has been demonstrated to sense NOx

Performance of NOx sensing has shown excellent sensitivity, resolution and long-term performance

