### CLEERS Coordination & Joint Development of Benchmark Kinetics for LNT & SCR

#### Agreements:

 Coordination of Cross-Cut Lean Exhaust Emission Reduction Simulation (8745) Stuart Daw, Vitaly Prikhodko, Charles Finney

 Joint Development of Benchmark Kinetics for LNT & SCR (8746)
 Jae-Soon Choi, Josh Pihl, Bill Partridge, Miyoung Kim, Kalyana Chakravarthy, Todd Toops Michael Lance, Stuart Daw

> PI: Stuart Daw Presenter: Jae-Soon Choi

Oak Ridge National Laboratory



Vehicle Technologies Program Annual Merit Review May 11, 2011, Washington, DC

DOE Managers: Ken Howden, Gurpreet Singh



MANAGED BY UT-BATTELLE FOR THE DEPARTMENT OF ENERGY

AK RIDGE NATIONAL LABORATORY

NTRC

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

## **Overview**

# Timeline

- Project start date:
  - -CLEERS Coordination (8745) FY00
  - -LNT & SCR Kinetics (8746) FY00
- Project end date & percent complete:
  - All ongoing

# Budget

- Project funding for FY10/FY11
  - CLEERS Coordination (8745): \$200K/\$200K
  - -LNT & SCR Kinetics (8746): \$500K/\$500K
- Funding request for FY12
  - Similar to FY11



- Fuel penalty
  - Regeneration & desulfation of emission controls require extra fuel consumption
- Cost of aftertreatment
  - High cost inhibits market acceptance of diesel & lean-gasoline
- Durability

-At present, large built-in margin required

# Partners

- Close collaboration w/ CLEERS Focus Groups & DOE Advanced Engine Crosscut Team
  - -> 20 institutions
  - -Nat'l labs: SNL, PNNL
  - Industry: GM, Ford, Cummins, DDC, Navistar, Delphi, Umicore ...



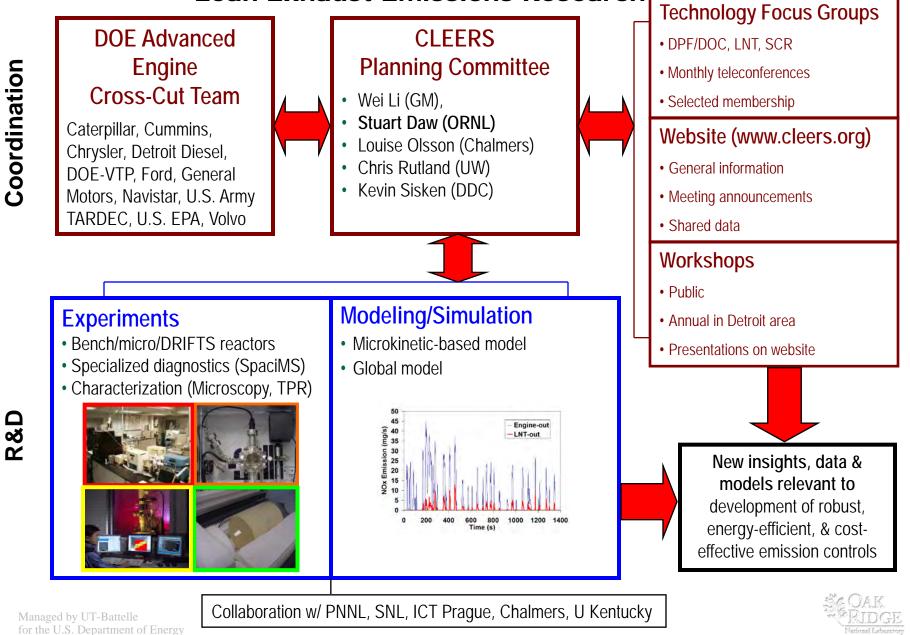
## **Project objectives-Relevance**

Enable robust & energy efficient lean emission control technologies by

Coordinating & conducting emissions controls simulation research

*Current development of lean-burn aftertreatment is highly empirical & requires fundamental insights to significantly improve system performance & reduce cost* 

- Identify and prioritize R&D needs within industry, and coordinate DOE research efforts (CLEERS Coordination)
- Develop detailed technical data required to simulate energy efficient emission controls (CLEERS Research)
  - Experiments: specialized measurements under relevant conditions to provide new insights into key LNT and SCR chemistry and kinetics
  - Modeling: consolidate new insights into LNT and SCR models that relate device and catalyst properties to fuel efficiency and emissions performance


**Research targets chosen based on the latest CLEERS poll & reviewer comments** SCR: surface chemistry and properties of advanced catalysts; impacts of aging and fouling on catalyst function LNT: NH<sub>3</sub> & N<sub>2</sub>O mechanisms for both CLEERS reference and new generation LNTs



## **Milestones**

- FY2010 milestones completed
  8745: Organized 2010 CLEERS public workshop
  8746: Publish joint results with PNNL on SCR catalyst kinetics
- FY2011 milestones on track
  - ¥8745: Organized 2011 CLEERS public workshop
  - 8746: Develop model for ammonia generation in LNTs

#### Approach: Prioritize/Coordinate/Perform/Disseminate Lean Exhaust Emissions Research



## **Technical** Accomplishments

### CLEERS coordination

- Organized 14<sup>th</sup> (2011) CLEERS Workshop
- Coordinated monthly Focus Group teleconferences
- Conducted new R&D priority survey
- Leveraged ORNL, PNNL, SNL unique capabilities
- Continued refining protocol for transient SCR catalyst characterization and utilizing results for systems simulations
- SCR research
  - Exercised transient SCR protocol on commercial copper zeolite catalyst
  - Transferred protocol data to PNNL for SCR model development and validation
  - Hydrothermally aged core samples to study impacts on catalyst function through protocol experiments and modeling (collaboration with PNNL)



# Technical Accomplishments (cont'd)

- LNT research
  - Clarified correlations between NH<sub>3</sub> & N<sub>2</sub>O selectivities with experiments & modeling of CLEERS LNT
    - > Evaluated impact of reductant type ( $H_2$ , CO,  $C_3H_6$ ,  $C_3H_8$ ) on selectivity
    - Studied transient chemistry of NH<sub>3</sub> decomposition, oxidation & adsorption
    - > Enhanced global model in collaboration with ICT Prague, Chalmers
    - Continued micro-kinetic modeling with SNL (lean/rich cycling, sulfation)
  - Started benchmarking CLEERS reference against a new generation lean GDI LNT



# **Technical Highlights**

# **CLEERS** Coordination



## **ORNL continued established coordination** roles

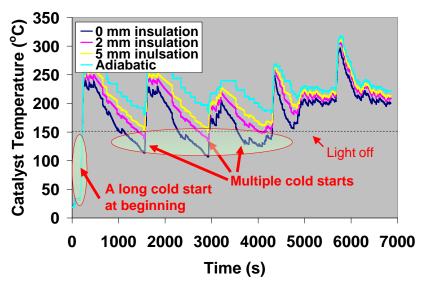
- CLEERS website
- Monthly teleconferences
  - Group telecon (20-30 domestic + int'l participants)
  - Presentations of very recent technical results
  - Host rotates among DPF, LNT, SCR Focus Groups
- Workshop #13, April 20-22, 2010, UM Dearborn
  - 90 attendees (OEMs, suppliers, software companies, nat'l labs, universities)
  - Industry panel on systems simulations
- Workshop #14, April 19-21, 2011, UM Dearborn
  - About 90 attendees (OEMs, suppliers, software companies, nat'l labs, universities
  - Industry panel on aftertreatment kinetic parameter evaluation from engine dynamometer and vehicle measurements
- Revised SCR transient catalyst lab protocol
  - Presented and discussed at public workshop and telecons
- Simulated comparisons of gasoline and diesel hybrids with lean NO<sub>x</sub> control
  - Demonstrated and published

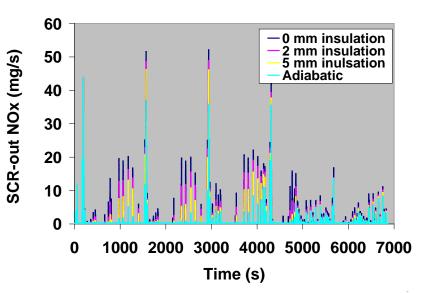


#### 2010 CLEERS Workshop



### We have continued to utilize CLEERS aftertreatment models for systems simulations


#### Example study of insulation effect on SCR NO<sub>x</sub> control for diesel PHEV


- 5 UDDS cycles beginning with cold start
- 2.4-L urea-SCR (Cu-ZSM-5 catalyst) for NO<sub>x</sub> control
- Varying level of mineral fiber catalyst insulation
- Non-optimized urea control

#### **Observations:**

- Insulation keeps SCR catalyst warm enough to reduce impact of cold starts
- Higher temperatures may accelerate aging
- Insulation reduces NO<sub>x</sub> and NH<sub>3</sub>

| Insulation (mm) | NOx (g/mile) | NH <sub>3</sub> (g/mile) |
|-----------------|--------------|--------------------------|
| 0               | 0.159        | 0.068                    |
| 2               | 0.117        | 0.048                    |
| 5               | 0.095        | 0.035                    |
| Adiabatic       | 0.068        | 0.010                    |





### We recently completed an updated survey of CLEERS R&D priorities

#### **Questionnaire sent to DOE AEC Team and collaborators**

- 8 OEMs
- 6 emissions control suppliers
- 5 energy companies
- 2 non-DOE federal agencies

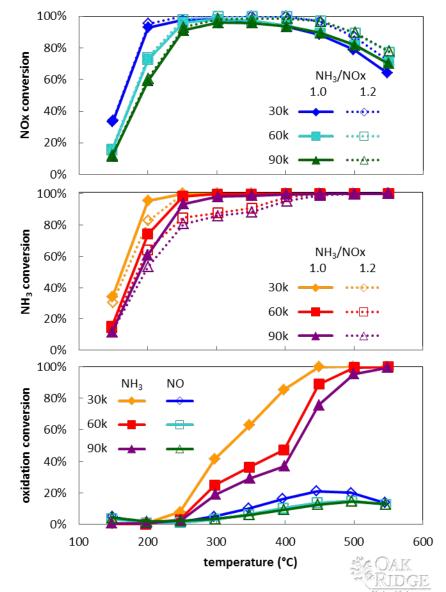
#### Survey structure

- 3 response categories: HD diesel, LD diesel, gasoline
- 3 survey areas: Technology priorities, CLEERS activities, databases
- Multiple topics rated as having High, Medium, or Low concern/value

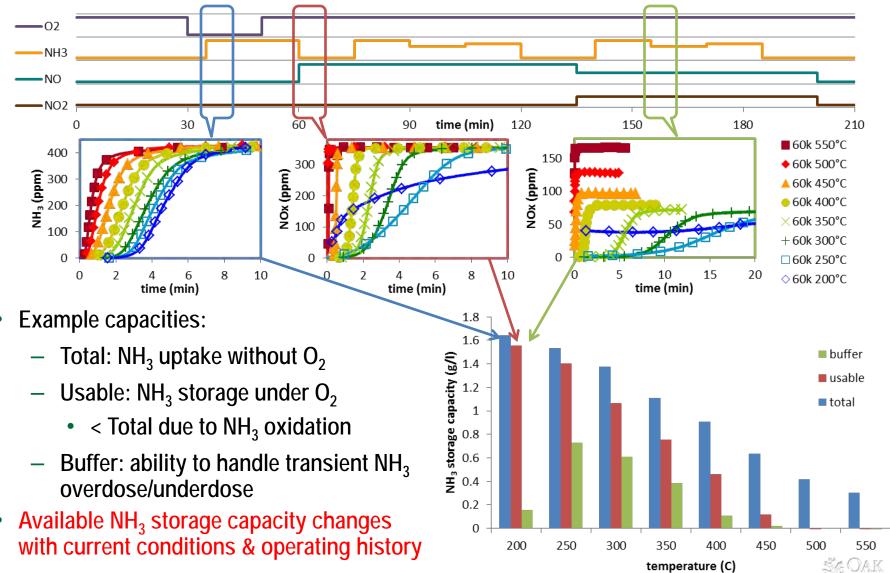
#### Preliminary Highlights (report will be issued after CC Team review):

- 25 responses returned
- Greatest emissions control technology R&D needs:
  - Understanding urea SCR catalyst properties and chemistry
  - Particulate filter measurement, sensing, and diagnostics
  - Understanding oxidation catalyst properties and chemistry
  - Reducing LNT PGM levels
  - Systems simulations of LNT-DPF and SCR-DPF combined devices

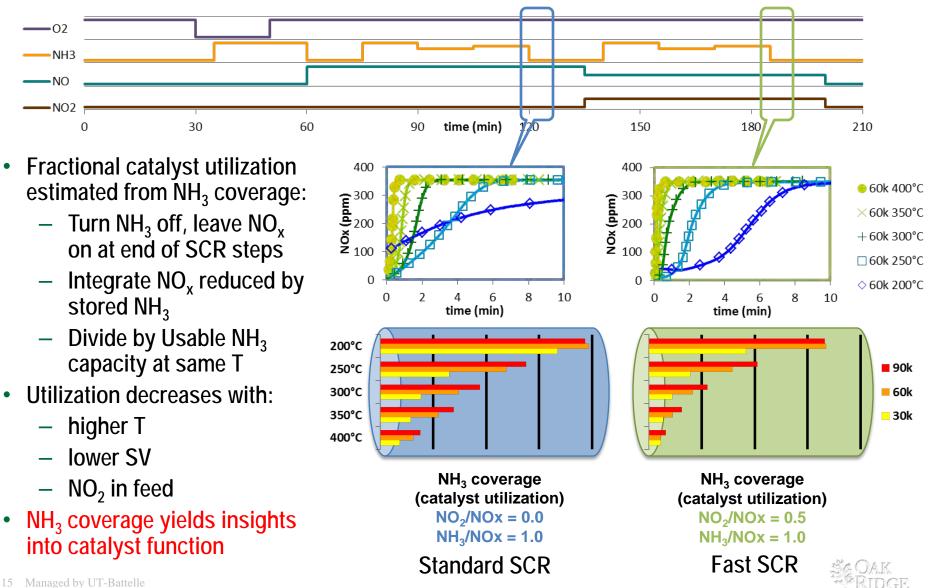



# **Technical Highlights**

**SCR** 




# Protocol data show wide operating window for fresh commercial Cu zeolite

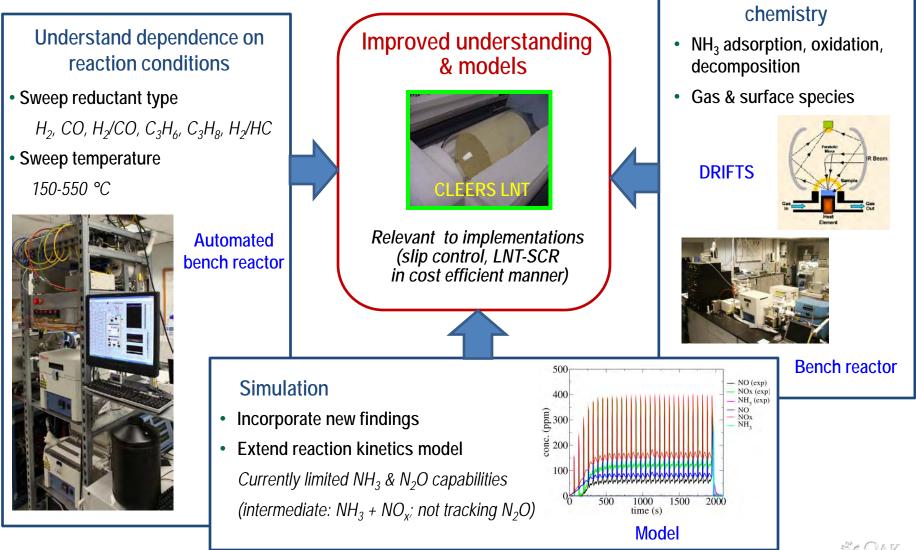

- Cu zeolite from Ford Super Duty Turbodiesel
- High NO<sub>x</sub> conversions at T>=250°C
  - Up to 90k hr<sup>-1</sup>
  - Without NO<sub>2</sub> in feed
- High T performance limited by NH<sub>3</sub> oxidation
  - 100%  $NH_3$  conversion for SCR  $NH_3/NO_x = 1$
  - NH<sub>3</sub> overdosing improves NO<sub>x</sub> conversion
  - Substantial  $NH_3 + O_2$  oxidation at T>=300°C
- High NO oxidation activity reduces need for NO<sub>2</sub> in feed
- Data transferred to PNNL for model calibration and validation
  - Baseline for aging and fouling studies
- Steady state protocol points provide:
  - Performance characterization
  - Data for model calibration
  - Insights into performance limitations



# New protocol transients quantify details of NH<sub>3</sub> storage capacities



# SCR surface NH<sub>3</sub> inventory provides insights into catalyst utilization

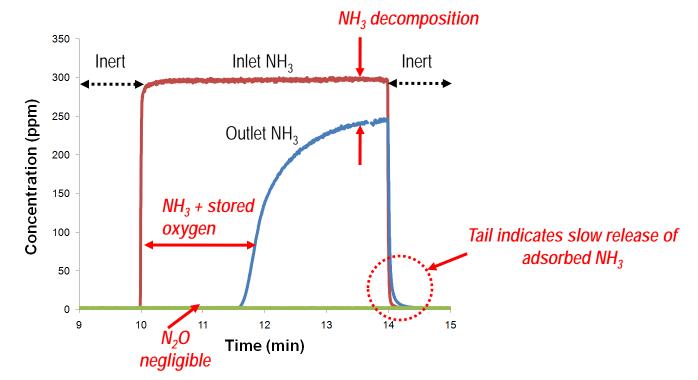



# **Technical Highlights**

LNT



# Elucidate NH<sub>3</sub> & N<sub>2</sub>O mechanisms via lab experiments & modeling

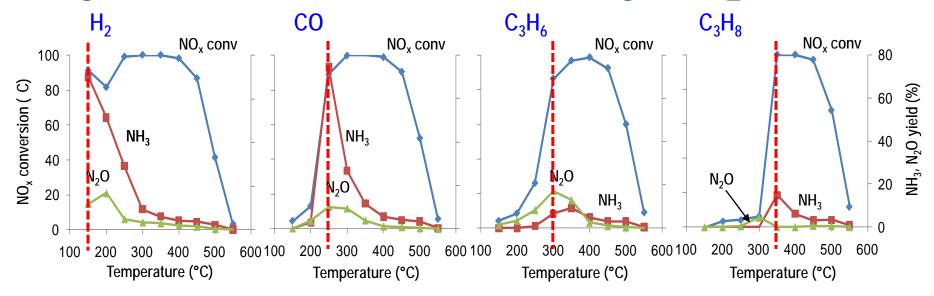





**Transient surface** 

# Various NH<sub>3</sub> surface interactions influence LNT selectivity

Transient response experiment at 300 °C NH<sub>3</sub> input to CLEERS LNT pre-oxidized with O<sub>2</sub>; no surface NO<sub>x</sub>



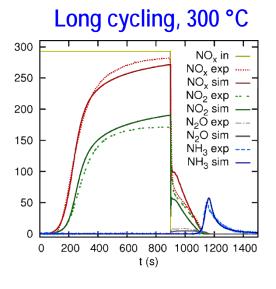

- NH<sub>3</sub> reduction of stored oxygen (CeO<sub>2</sub>): very efficient (plug-like front)
- NH<sub>3</sub> reduction of CeO<sub>2</sub> not a major contributor to N<sub>2</sub>O (vs. NH<sub>3</sub> reduction of surface NO<sub>x</sub>)
- $NH_3$  decomposition ( $2NH_3 > N_2 + 3H_2$ ): higher rates under transient conditions
- NH<sub>3</sub> adsorption & desorption Managed by UT-Battelle

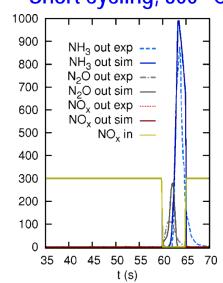
for the U.S. Department of Energy



### **Reductant type affects spatial distribution of** NH<sub>3</sub> chemistry controlling NH<sub>3</sub> & N<sub>2</sub>O yields




- Light-off temperature is highly dependent on reductant type: H<sub>2</sub> < CO < C<sub>3</sub>H<sub>6</sub> < C<sub>3</sub>H<sub>8</sub>
  - At light-off : near max conv. reached using whole LNT -
  - Above light-off : max conv. using partial length of LNT
- NH<sub>3</sub> & N<sub>2</sub>O yields peak at light-off T
  - Significant slip possible:  $NH_3 \sim 70\%$ ;  $N_2O \sim 20\%$
  - At light-off: reactions forming  $NH_3$  (reductant + stored  $NO_x$ ) &  $N_2O$  ( $NH_3$  + stored  $NO_x$ ) maximized
  - Above light-off:  $NH_3$ -consuming reactions without generating  $N_2O$  increase ( $NH_3 + CeO_2$ ; decomposition)

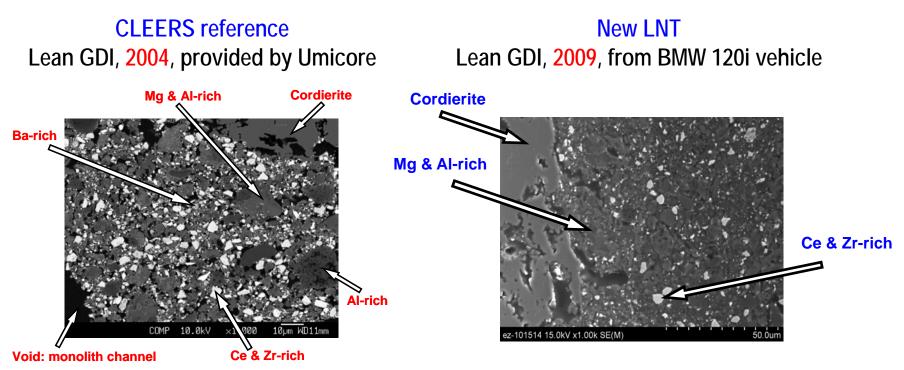





### **Experimental findings are enhancing models** for CLEERS LNT

- Extended kinetics in global models to capture observed NH<sub>3</sub> and N<sub>2</sub>O chemistry in collaboration with ICT Prague (Dr. Koci)
  - NH<sub>3</sub> + stored NO<sub>x</sub>; NH<sub>3</sub> + stored oxygen; NH<sub>3</sub>-N<sub>2</sub>O correlations






Short cycling, 300 °C

- Collaborated with SNL (Dr. Larson) on microkinetic model (see ACE035 talk)
  - Lean/rich cycling; sulfation/desulfation



# New generation lean GDI LNT benchmarking against CLEERS reference initiated



|                                  | CLEERS<br>reference | New LNT |
|----------------------------------|---------------------|---------|
| Cell density (cpsi)              | 625                 | 413     |
| Ba loading (g/ft <sup>3</sup> )  | 442                 | 565     |
| PGM loading (g/ft <sup>3</sup> ) | 103                 | 94      |
| Pt/Pd/Rh ratio                   | 8/3/1               | 7/3/1   |

- Responsive to FY10 review comments
- Initial characterization indicates similar basic components in both LNTs
  - Reactor evaluation planned
  - Catalyst used in an ORNL lean gasoline enginebased project (see ACE033 talk)



# **Collaborations**

- Partners
  - National laboratories: ORNL (HTML), PNNL, SNL
  - Universities: Kentucky, Houston, ICT Prague (Dr. Kočí), Chalmers (Prof. Olsson)
  - Industry: CLEERS Focus Group & DOE Advanced Engine Crosscut Team members including Cummins, Navistar, Ford, Umicore, BASF
- Technology Transfer
  - 18 publications & presentations (dissemination of DOE-funded research outcome via high visibility forums: SAE, int'l journals etc.)
  - SCR lab protocol publicly proposed
  - LNT & SCR models used for DOE Vehicle & System HEV/PHEV Simulations
  - Data, systems impact guidance for PNNL & SNL activities



# **Future Work**

- CLEERS coordination to maximize research synergy
  - Planning Committee, Focus Groups, Workshop & website
  - Synchronizing ORNL-PNNL-SNL R&D
  - Complete and issue report on priority survey
  - Basic data & model exchange between CLEERS & other DOE projects
- SCR research to support modeling of catalyst performance after aging and fouling
  - Perform protocol experiments on hydrothermally aged samples and transfer data to PNNL partners
  - Use surface spectroscopy to investigate nature of Cu zeolite active sites and how they change with aging and fouling
- LNT research to reduce cost of lean exhaust aftertreatment
  - Evaluate the new LNT & compare to CLEERS reference catalyst
  - Refine global model on  $NH_3 \& N_2O$  selectivities with ICT Prague & Chalmers
  - Enhance microkinetic model on fast cycling & sulfation with SNL



# Summary

- Relevance
  - Assist DOE in coordinating & conducting R&D enabling development of energy & cost effective lean emissions control technologies
- Approach
  - Planning Committee, Focus Groups, website, Workshops, polling, Crosscut updates, data & model exchanges
  - Multi-scale lab R&D on commercial & model LNT & urea-SCR catalysts under relevant conditions (modeling & experiments)
- Technical Accomplishments
  - Monthly Focus meetings, website, 2010 & 2011 Workshops, Crosscut reports, systems implementation of CLEERS data & models
  - Fundamental understanding and modeling of practically relevant urea-SCR & LNT catalysts
- Collaborations
  - Non-proprietary collaborations among industry, national labs, universities, & foreign institutions through CLEERS organizational structure
  - Extensive publications/presentations
- Plans for Next Fiscal Year
  - Planning Committee, Focus Groups, Crosscut reports, website, workshops, enhanced database
  - Flow reactor and spectroscopic investigations of aging and fouling of Cu zeolite catalysts
  - Benchmark CLEERS ref to new-generation LNT with reactor, modeling, & characterization

