CLEERS Coordination & Development of Catalyst Process Kinetic Data

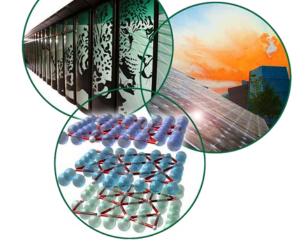
Agreements:

- Coordination of Cross-Cut Lean Exhaust Emission Reduction Simulation (8745)
 Vitaly Prikhodko, Charles Finney, Stuart Daw (PI)
- Joint Development of Benchmark Kinetics for LNT & SCR (8746)

 Jae-Soon Choi, Josh Pihl, Bill Partridge, Todd Toops, Michael Lance, Kalyana Chakravarthy, Stuart Daw (PI)
- Sulfur & Thermal Deactivation Effects on Transient LNT Chemistry (8744)
 Josh Pihl, Nathan Ottinger, Jae-Soon Choi, Todd Toops (PI)

Presenter: Jae-Soon Choi

Oak Ridge National Laboratory


Project ID: ace_20_choi

Vehicle Technologies Program Annual Merit Review May 20, 2009, Arlington, VA

may 20, 2000, Annigton, VA

DOE Managers: Ken Howden, Gurpreet Singh

Overview

Timeline

- Project start date:
 - -CLEERS Coordination (8745) FY00
 - -LNT & SCR Kinetics (8746) FY00
 - -Sulfur and Thermal Effects (8744) FY00
- Project end date & percent complete:
 - All ongoing

Budget

- Project funding FY08/FY09
 - -CLEERS Coordination (8745): \$200/\$200
 - **-LNT & SCR Kinetics (8746): \$500/\$450**
 - -Sulfur and Thermal Effects (8744): \$100/\$100
- Funding request for FY10
 - -Similar to FY09

Barriers

- Fuel penalty
 - Regeneration & desulfation of emission controls require extra fuel consumption
- Cost of aftertreatment
 - High cost inhibits market acceptance of diesel & lean-gasoline
- Durability
 - -At present, large built-in margin required

Partners

- Informal but close collaboration w/ CLEERS Focus Group members & DOE Diesel Crosscut Team
 - -> 20 institutions
 - -Nat'l labs: SNL, PNNL
 - -Industry: GM, Ford, Cummins, DDC, Navistar, Delphi, Umicore ...

Objectives

Enable robust & energy efficient lean emission control technologies by

Coordinating & conducting emissions controls simulation research

Current development of lean-burn aftertreatment is highly empirical & requires fundamental insights to significantly improve system performance & reduce cost

- Identify/prioritize R&D needs within industry & coordinate DOE research efforts (CLEERS Coordination)
- Develop detailed technical data required to simulate energy efficient emission controls (LNT & SCR Kinetics, Sulfur & Thermal Effects)
 - Measure hydrocarbon poisoning & reaction intermediates on urea-SCR catalysts
 - Understand nature, spatial distribution, impact on performance, & desulfation characteristics of sulfur species on LNT catalysts
 - Explore the possibility of decreasing LNT desulfation temperature with dopants
 - Implement LNT lean/rich cycling model to elucidate reductant & NH₃ chemistry

Milestones

- FY2008 milestones completed
 - **√** 8745: Organized 11th CLEERS public workshop
 - **√** 8746: Open literature publication on modeling sulfur impact on LNT kinetics
 - 8744: Published sulfation/desulfation experimental results on model catalysts
- FY2009 milestones on target for Sept. 2009 completion
 - 8745: Organize 12th CLEERS workshop
 - 8746: Publish LNT model benchmarking against experiments
 - 8744: Identify distinct sulfur coordination with specific components in Umicore LNT

Approach: Prioritize/Coordinate/Perform/Disseminate

Lean Exhaust Emissions Research

DOE Diesel Cross-Cut Team

Caterpillar, Cummins, Chrysler, Detroit Diesel, DOE-OVT, Ford, General Motors, International, U.S. Army TARDEC, U.S. EPA, Volvo

- Dick Blint (GM),
- Stuart Daw (ORNL)
- Louise Olsson (Chalmers)
- Chris Rutland (UW)
- Houshun Zhang (DDC)

Technology Focus Groups

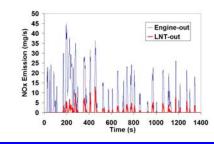
- DPF, LNT, SCR
- Monthly teleconferences
- Selected membership

Website (www.cleers.org)

- General information
- · Meeting announcements
- · Shared data

Workshops

- Public
- · Annual in Detroit area
- · Presentations on website


Experiments (LNT & SCR)

- Bench/micro/DRIFTS reactors
- Specialized diagnostics (SpaciMS)
- Characterization (Microscopy, TPR)

Modeling/Simulation (LNT)

- Microkinetic-based model
- Global model
- LNT lean/rich cycling
- Sulfation impact on performance

New insights, data & models relevant to development of robust, energy-efficient, & cost-

effective emission controls

Collaboration w/ PNNL Drs. Herling, Tonkyn, Male

Collaboration w/ SNL Dr. Larson

Coordination

Technical Accomplishments

- CLEERS Coordination (8745)
 - Organized 11th & 12th CLEERS Workshops & facilitated monthly telecons
 - Completed 2nd R&D priority survey and follow-on R&D gaps analysis
 - Coordinated multi-lab research efforts to leverage each lab's unique capabilities (ORNL, PNNL, & SNL)
- LNT & SCR Kinetics (8746); Sulfur & Thermal Effects (8744)
 - Assessed hydrocarbon impact on the CLEERS urea-SCR catalyst with DRIFTS (8746; w/ PNNL)
 - Elucidated sulfation & desulfation impact on the CLEERS LNT (8746, 8744)
 - Quantified dopant effects on desulfation behavior of Pt/Ba/Al₂O₃ model LNT & characterized various LNT components (8744)
 - Investigated NH₃ mechanisms by implementing microkinetic-based LNT models (8746; w/ SNL)

Result Highlights 1: CLEERS Coordination (8745) (1/3)

ORNL continued established coordination roles

- Monthly teleconferences
 - Group telecon (20-30 domestic + int'l participants)
 - Presentations of very recent technical results
 - Host rotates among DPF, LNT, SCR Focus Groups
- Workshop #11 held May 13-15, 2008, UM Dearborn
 - 3 days of technical presentations (posted on website)
 - > 110 attendees (OEMs, suppliers, software companies, nat'l labs, universities)
- Workshop #12 April 28-30, 2009, UM Dearborn
 - OBD industry panel included in response to R&D gaps analysis
- Completed 2008 R&D priorities survey
 - Combined with 2007 survey results, report issued
- R&D gaps analysis completed
 - Reported to Crosscut Team, discussed at 12th Workshop
- Adapted CLEERS models for system simulations

CLEERS Workshop

Result Highlights 1: CLEERS Coordination (8745) (2/3)

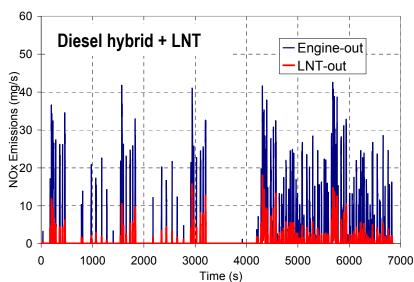
- ORNL coordinated a 'gaps' analysis to determine if current emissions R&D meets industry needs
 - Interfaced with CLEERS Planning Committee and Focus Groups
 - Collated results from 2007 and 2008 surveys
 - Included DOE projects and industry activities
 - Summary of findings:
 - The overall DOE-VTP project portfolio aligns well with high priority needs in both diesel and gasoline industry categories
 - In the diesel category, OBD sensor and sensor utilization needs are not fully covered by existing DOE-VTP projects
 - Sensor needs are also not adequately covered by supplier or industry activities
 - The Crosscut Team should consider options for sensor project growth/ redirection

Result Highlights 1: CLEERS Coordination (8745) (3/3)

 ORNL models have improved understanding of lean emissions control impact on fuel economy

Example simulation of Prius PHEV

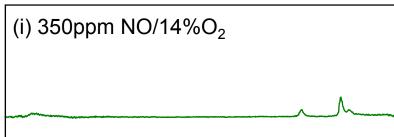
(PSAT modeling with simplified ORNL-CLEERS LNT model)

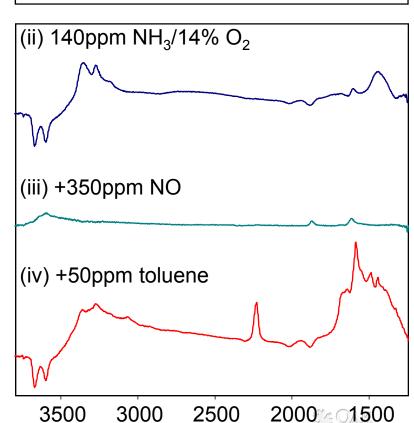

- Parameters:
 - Stoichiometric gasoline with TWC
 - Compared to diesel engine w & w/o LNT (no HECC, no DPF)
 - 5 UDDS cycles from cold start
 - 100% initial charge in 5 kWhr battery

Results:

Gasoline + TWC		Diesel		Diesel + LNT	
Fuel Economy (mpg)	Tailpipe NO _x (g/mile)	Fuel Economy (mpg)	Tailpipe NO _x (g/mile)	Fuel Economy (mpg)	Tailpipe NO _x (g/mile)
113.7	0.11 (89% red)	136.5	0.50	132.4	0.10 (80% red)

- -3% fuel penalty due to LNT
- Diesel efficiency advantage reduced from 6% to
 3% when LNT added (fuel density effect included)

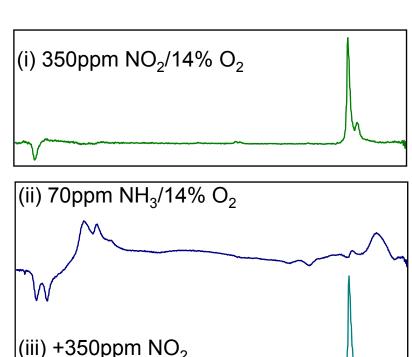


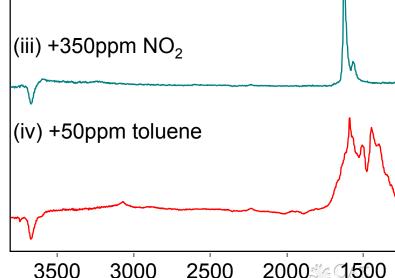

Result Highlights 2: Urea-SCR-HC Poisoning (8746) (1/2)

Demonstrated DRIFTS is effective tool to probe HC poisoning of SCR functionality

absorbance

- Responsive to urea-SCR interest in CLEERS poll
 - Durability/poisoning is a high priority
 - We are ramping up SCR efforts this FY
- Changes in surface adsorbates reveal catalyst poisoning by toluene at 200 °C:
 - -(ii) NH₃ + O₂ shows NH₃ adsorption
 - -(iii) adding NO to flow starts SCR of NO; adsorbed NH₃ is consumed; spectrum looks like (i)
 - -(iv) addition of toluene "shuts down" SCR reaction; adsorbed NH₃ reappears; toluene observed (1500 cm⁻¹)
- After exposure to toluene, SCR reaction rate too slow to consume all surface NH₃ cf. Cavataio et al. SAE 2007-01-1575
- Activity is not recovered with removal of toluene from feed gas


wavenumbers (cm⁻¹)


Result Highlights 2: Urea-SCR-HC Poisoning (8746) (2/2)

 Changing feed from NO to NO₂ mitigates impact of toluene at 200 °C

absorbance

- Repeat experiment with NO₂ instead of NO in feed
 - (ii) NH₃ adsorption looks identical
 - (iii) NO₂ consumes all surface NH₃, resulting in a spectrum very similar to NO₂ + O₂ (i)
 - (iv) addition of toluene generates toluene adsorption features, but does not result in reappearance of surface NH₃
- Toluene does not degrade NH₃ + NO₂ reaction rate as much as in NO case
- Suggests toluene poisoning of NO oxidation function leads to inhibited NH₃ + NO reaction
- Will compare to PNNL flow reactor results & investigate at other temp's & HCs

Result Highlights 3: LNT-S/DeS Impact (8746, 8744) (1/4)

- Refined understanding of sulfur impact on real LNT
- Responsive to LNT interest in CLEERS poll: LNT durability/poisoning is a top priority
- Characterize the CLEERS reference (Umicore) with a range of tools
 - Technical barrier: quantitative assessment of sulfur impact is lacking for commercial catalysts

Bench reactor/SpaciMS

- Monolith cores
- Performance/sulfation-desulf.
- Spatial reaction distributions

Microreactor

- Powder
- TPR/chemisorption
- Total surface area


DRIFTS

- Powder/washcoated wafers
- Surface adsorbed species

Characterization

- Powder/washcoated wafers
- Elemental/XPS analyses
- Microscopy/EPMA

- Goal is to understand correlations among chemical forms, spatial distribution & performance impact of sulfur on a practical LNT
- Status:

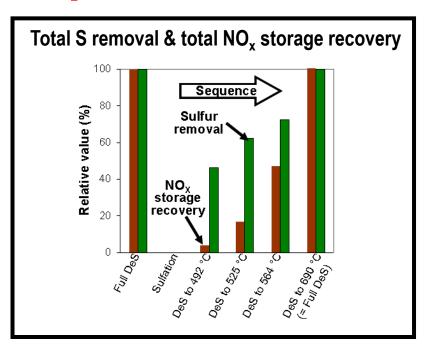
 - Assessed impact of stepwise DeS on CLEERS LNT performance Completed DeS of catalyst components & determination of nature & distribution of S species

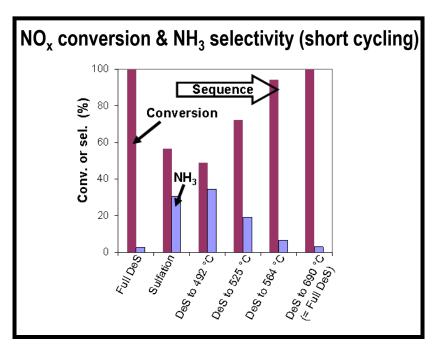
Result Highlights 3: LNT-S/DeS Impact (8746, 8744) (2/4)

- Clarified the roles of different sulfur species by stepwise desulfation of CLEERS LNT

Experimental sequence

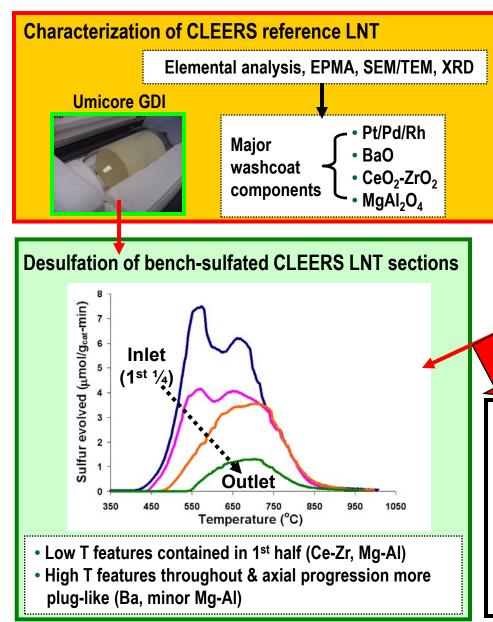
- Before sulfation (after previous DeS)
- Sulfation (3.4 g S/L cat.): 400 °C
- 1st step of DeS: 400 to 492 °C
- 2nd step of DeS: 400 to 525 °C
- 3rd step of DeS: 400 to 564 °C
- 4th (final) step of DeS: 400 to 690 °C

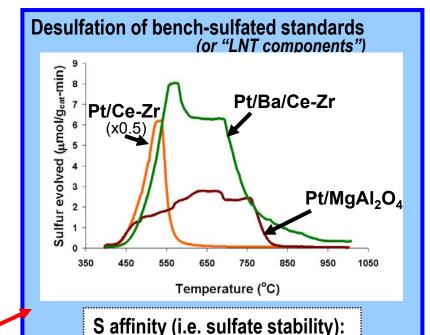

At each step, different LNT functions were evaluated:


- Total S removal from desulfation profiles
- Total NO_x storage recovery from long cycling at 400 °C (15-min lean/10-min rich)
- NO_x conversion & NH₃ selectivity from short cycling at 400 °C (60-s lean/5-s rich)

Result Highlights 3: LNT-S/DeS Impact (8746, 8744) (3/4)

 Different types of sulfates have distinct impact on LNT performance




- Sulfation decreases total NO_x storage & NO_x conversion but increases NH₃ selectivity
- Stepwise desulfation reverses this trend but each step has distinct impact revealing roles of S:
 - 46% S recovered from 1st step: ~zero impact on both short & long cycling indicates association with components with insignificant NO_x storage capacity ("S-trap")
 - 26% S from 2nd+3rd steps: major impact on short cycling (NO_x conv. & NH₃ sel.)
 indicates association with NO_x storage components of practical relevance
 - 28% S from 4th step w/ major impact on long cycling (total NO_x capacity)

indicates association with NO $_{
m x}$ storage components of little importance to short cycling $\odot_{
m AK}$

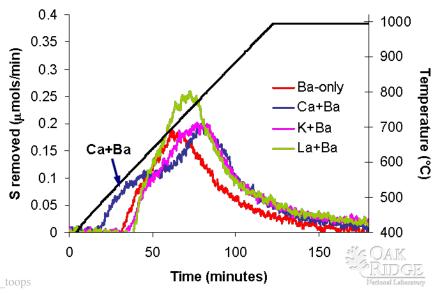
Result Highlights 3: LNT-S/DeS Impact (8746, 8744) (4/4)

- Mater. analysis confirmed nature & distribution of S

Results consistent w/ performance data from FY08

 $Ce-Zr < MgAl_2O_4 < BaO$

- NO_x storage poisoning (Ba) is plug-like
- Oxygen storage poisoning (Ce-Zr) is less efficient (i.e., no low T features in $4^{th} \frac{1}{4}$)
- Ce-Zr, Mg-Al delay progression of Ba S ("S trap")
- Insights strengthen our conceptual model & useful for modeling & development work
 - Info. being transferred to SNL-ORNL modeling activity


Result Highlights 4: LNT-Dopant Impact on DeS (8744)

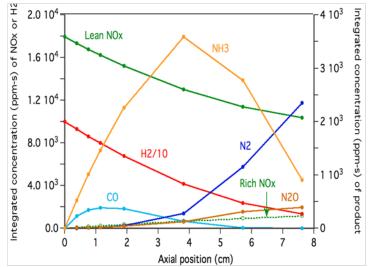
- Ca-doped LNT shows improved $DeNO_x$ & $DeSO_x$ performance
- Responsive to LNT interest in CLEERS poll
- Collaboration w/ BES-funded Center for Nanophase Material Science (CNMS) at ORNL: successful CNMS user center proposal
- Goal/status: completed proof-of-concept experiments (valence and lattice-spacing effects)

	Ва	Ca	K	La
Covalent Radius (Å)	1.98	1.74	2.03	1.69
Valence	+2	+2	+1	+3

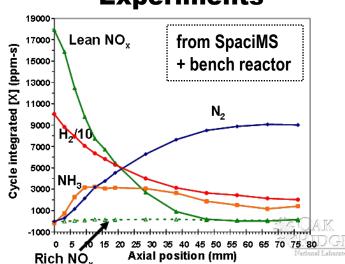
- Synthesized catalysts w/ substitute introduced into Ba-oxide lattice
 - Ca, K, or La at 5 mol% dispersed on Pt/Ba/Al₂O₃
- Evaluated DeNO_x & DeSO_x performance
- Ca+Ba catalyst shows improved performance and desulfation behavior
 - 8-13% better NO_x conversion at 200 and 300°C
 - 50 °C lower onset in desulfation
- Next Step: confirmation & detailed materials characterization to probe promoting effects of Ca

Result Highlights 5: LNT Modeling (8746)

- We are implementing fast lean/rich cycling model to help clarify NH₃ chemistry on Pt/Ba/Al₂O₃


Responsive to LNT interest in CLEERS poll

- LNT kinetics/mechanisms: NH₃ formation
- NH₃ slip control (coupled LNT-SCR)
- Collaboration with Dr. Larson (SNL)
- Goal: confirm NH₃ mechanisms with microkineticbased CLEERS LNT model
 - i.e., if and how much intermediate NH₃ route is involved
 - Technical barrier: extent of NH₃ route contribution is difficult to quantify experimentally due to transient nature
 - Virtual experiments can provide high spatiotemporal resolution


Status

- Integrated storage & regen mechanisms to model, and began benchmarking model against experiments
- Started simulations to resolve spatiotemporally NH₃

Simulation

Experiments

Future Work

- CLEERS Coordination (8745)
 - Continue Planning Committee, Focus Group, Workshop & website activities
 - Continue synchronizing R&D among ORNL-PNNL-SNL
 - Update Priority Survey (every 2 years)
 - Expand basic data & model exchange between CLEERS & other VTP projects
- R&D: Joint Development of Benchmark Kinetics (8746, 8744)
 - Confirm chemistry & kinetics of LNT sulfation/desulfation
 - Complete specialized analyses of CLEERS reference LNT segments, model components & dopants (XPS, EPMA, DRIFTS, TPR, bench reactors, SpaciMS)
 - Validate LNT model performance predictions against bench measurements
 - Implement combined LNT model in form that can be used for drive cycle simulations (e.g., PSAT) and shared with CLEERS community
 - Fast rich/lean cycling; sulfation effects; thermal aging effects
 - Detailed investigation of urea-SCR kinetics
 - Hydrocarbon poisoning; reaction intermediates
 - Compare to PNNL reactor results

Summary

Relevance to DOE objectives

 Coordinate & conduct DOE R&D to generate data, kinetics, correlations & models enabling development of energy & cost effective lean emissions control technologies

Approach

- Planning Committee, Focus Groups, website, Workshops, priority polling, Cross-Cut Team updates, data/model exchanges
- Multi-scale laboratory research on commercial & model LNT & urea-SCR catalysts under practically relevant conditions (both modeling & experiments)

Technical Accomplishments

- Monthly Focus meetings, maintained website, 11th & 12th Workshops, 2008 poll, bi-monthly Crosscut reports, PSAT implementation of CLEERS data/models
- Provided fundamental understanding of practically relevant urea-SCR (HC poisoning) & LNT (DeSO_x) catalysts enabling improved modeling, system design & optimization, and catalyst formulation

Technology Transfer

- Non-proprietary collaborations among industry, national labs, and universities through CLEERS organizational structure
- Collaboration with other VTP projects (MCNARD, PSAT) & extensive publications/presentations

Plans for Next Fiscal Year

- Continued Planning meetings, Focus Group interactions, Cross-Cut reports, website, Workshops, priority poll, leveraging of data/models for VTP
- Elucidate LNT desulfation mechanisms & HC impact on urea-SCR catalysts
- Perform full cycle simulations with combined LNT mechanism

