CLEERS: Aftertreatment Modeling and Analysis

Jong Lee (P.I.) Darrell Herling, Chuck Peden, Mark Stewart Pacific Northwest National Lab May 11, 2011

ACE023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Status: On-going core R&D
- Originated FY03 with DPF
- Now also includes LNT, SCR and DOC technologies

Budget

- FY10 funding \$750K
- FY11 funding allocation \$750K
 - Split between SCR, LNT, DOC and DPF focus areas

Barriers

- Limitations on:
 - available modeling tools
 - chemistry fundamentals
 - knowledge of material behavior
- Effective dissemination of information
- Technical "Valley of Death"

Partner

- Diesel Crosscut Team
- 21CT partners
- USCAR partners
- Oak Ridge National Lab

CLEERS PNNL Subprogram Goal

Working closely with our National Lab partners, the CLEERS industrial/academic team and in coordination with our CRADA portfolio, PNNL will...

...provide the practical & scientific understanding and analytical base required to enable the development of efficient, commercially viable emissions control solutions and modeling tools for ultra high efficiency vehicles.

- VT program goals are achieved through these project objectives:
 - interact with technical community to indentify relevant technological gaps
 - understand fundamental underlying mechanisms and material behavior
 - develop analytical and modeling tools, methodologies, and best practices
 - apply knowledge and tools to advance technologies leading to reducing vehicle emissions while improving efficiency
- Specific work tasks in support of the objectives are arrived at through:
 - focus group industrial monthly teleconferences, diesel x-cut meetings
 - yearly workshops and surveys
 - submission of SOW to the VT office

Technical Milestones & Approach

- The overall performance measure of the project is inextricably linked to the interests of industry
 - PNNL CLEERS activities have resulted in the formation of new CRADAs
 - Tremendous success of the annual workshops
 - Strong participation in the monthly teleconferences
- Specific performance measures are developed with the industrial/academic partners and captured in SOW
 - Specific technical targets and major milestones are described in our AOPs and annual reports to VT
- Approach "Science to Solutions"

PNNL FY11 Portfolio

CLEERS activity

Integrated Systems – John Lee

- DPF subtasks* Mark Stewart
- SCR subtasks* John Lee
- LNT subtasks Chuck Peden

CRADA activities

DPF – DOW Automotive (Stewart)**

SCR/DPF - PACCAR (Rappe)

SCR, HC – Ford Motor Company (Peden, Lee)

SCR, DOC – General Motors (Peden)

LNT – Cummins Inc. (Peden)

Oxidation Catalysts

- General Motors (Lee)
- SDC Materials (Herling)
- Caterpillar (Rappe)**

Institute for INTERFACIAL CATALYSIS

*PNNL-led subteam **Past activities

FY2010/2011 Scope Objectives

Selective Catalytic Reduction (SCR)

- Update our SCR model for the state-of-the-art Cu SCR catalyst, and develop kinetics models to describe the performance degradation due to the competitive adsorption and catalyst aging
- Conduct detailed characterization of the Cu SCR catalyst with emphasis on the active sites and its deactivation
- Lean NOx Trap (LNT)

6

- Complete the investigation of CO₂ and H₂O effects on BaO morphology changes and NOx storage properties
- Fundamental studies of novel high-temp LNT catalyst materials
- Diesel Particulate Filter (DPF)
 - Evaluate the accuracy of unit collector model with respect to nano-sized particulates, and improve the accuracy of mico-scale model for prediction of soot-catalyst contact
 - Characterize soot chemistry and structure relevant to exhaust system performance and regeneration

Proudly Operated by Battelle Since 1965

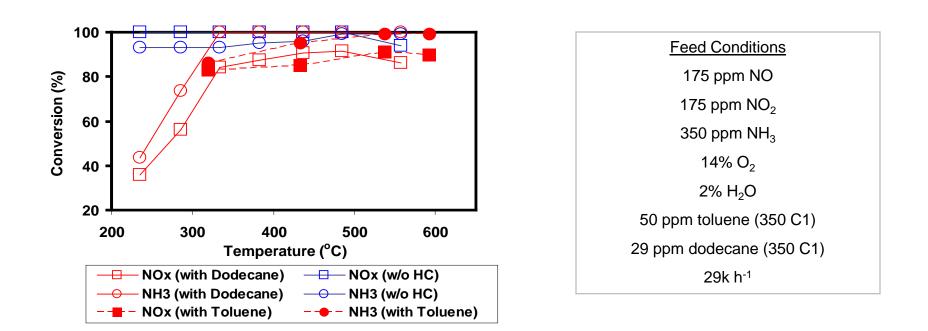
Technical Accomplishments Outline

SCR

- Developed single site kinetic models to describe the effects of competitive adsorption on NOx reduction on Fe SCR catalyst
- Currently developing Cu SCR model with ORNL, and conducting detailed characterization of the state-of-the-art Cu SCR catalyst with emphasis on the active sites

LNT

- Demonstration of significantly enhanced high temperature performance for a K/MgAl₂O₄ LNT material
- Fundamental studies of complex morphology changes in K-based LNT materials have been initiated


DPF

- Currently evaluating the accuracy of unit collector model with respect to nano-sized particulates
- Recently collected soot from HDD engine at MTU for characterization of soot chemistry and structure

Selective Catalytic Reduction

Effect of Hydrocarbon on SCR Reactions

- The effects of HC on Fe SCR catalyst examined using model HC species for combustion products and unburned fuel
- Detrimental effects of toluene & n-dodecane on SCR reactions
- Models developed to investigate the effects of HC on SCR reaction pathways quantitatively

Pacific Northwest

Overview of PNNL 1-D SCR Model

- Gas phase, surface phase concentrations and NH₃ storage as states
- Coded as 'C' S-functions and developed in Matlab/Simulink
- Optimized and validated using steady state and transient reactor data

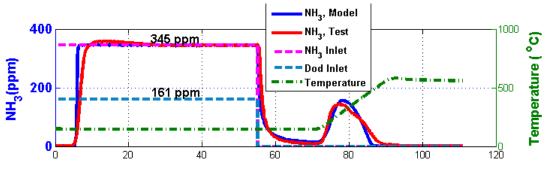
No	Reaction Name	Reaction	Reaction Rate		
1	NH ₃ Adsorption	$NH_3 + S \rightarrow NH_3^*$	$R_1 = k_1 C_{s, NH3} (1 - \theta) \mathcal{Q}$		
2	NH ₃ Desorption	$NH_{3}^{*} \rightarrow NH_{3} + S$	$R_2 = k_2 \theta \mathcal{Q}$		
3	Fast SCR	$2NH_3 + NO + NO_2 \rightarrow 2N_2 + 3H_2O$	$R_3 = k_3 C_{NO} C_{NO2} \theta \Omega$		
4	Standard SCR	$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$	$R_4 = k_4 C_{NO} \theta \Omega$		
5	NO ₂ -SCR	$4NH_3+3NO_2 \rightarrow 3.5N_2+6H_2O$	$R_5 = k_5 C_{NO2} \mathcal{O} \mathcal{Q}$		
6	NH ₃ Oxidation	$2NH_3+3/2O_2 \rightarrow N_2+3H_2O$	$R_6 = k_6 C_{O2} \theta \Omega$		
7	NO-NO ₂ Oxidation	NO+1/2O ₂ ⇔NO ₂	$\mathbf{R}_{7} = \mathbf{k}_{7,f} \mathbf{C}_{NO} \mathbf{C}_{O2}^{1/2} - \mathbf{k}_{7,b} \mathbf{C}_{NO2}$		

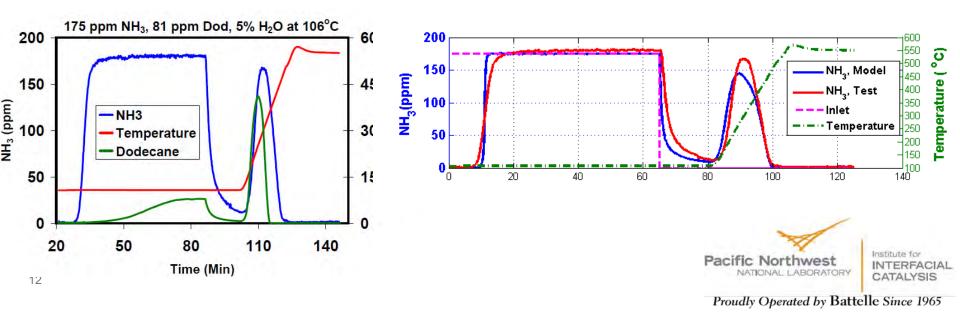
Modeling Competitive Adsorption

- Single site storage model was first developed, and parameters were obtained from the Langmuir isotherms.
- Assuming the adsorbates, such as NH₃, NO, NO₂, H₂O and hydrocarbons (toluene, n-dodecane), competing for the same active site, single site kinetics for each species and the respective surface coverage are defined as follows:

$$\frac{d\theta_{i}}{dt} = \frac{1}{\Omega_{i}} [k_{ads,i}(1 - \theta_{i} - \sum_{j=1}^{N-1+P} \theta_{j})c_{s,i}\Omega_{i} - k_{des,i}\theta_{i}\Omega_{i} - \sum_{k=1}^{M} n_{i,k}r_{i,k}]$$

$$\varepsilon \frac{\partial c_{g,i}}{\partial t} = -\varepsilon u \frac{\partial c_{g,i}}{\partial x} - \beta_{i}A_{g}(c_{g,i} - c_{s,i})$$

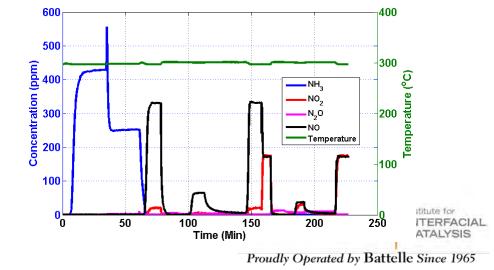

$$(1 - \varepsilon) \frac{\partial c_{s,i}}{\partial t} = \beta_{i}A_{g}(c_{g,i} - c_{s,i}) + \sum_{k} r_{i,k}n_{i,k}$$


INTERFACIAL CATALYSIS

CA Model Validation: NH₃, H₂O, Dodecane

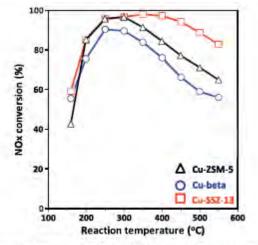
 Competitive adsorption (CA) model development using data for NH₃ vs. H₂O, NH₃ vs. HC

 CA model validation for full competitive adsorption of NH₃, H₂O, and dodecane



CLEERS Cu SCR Model Development

Commercial Cu SCR catalyst evaluation


- Cu SCR being used by most OEMs in North America
- Lab reactor testing currently being conducted at ORNL using the CLEERS Transient reactor test protocol
- PNNL's 1-D Cu SCR catalyst model
 - Same strategy used for the Fe SCR catalyst model
 - Cu catalyst model being developed entirely in Matlab/Simulink
 - Autonomie being considered as platform to share CLEERS SCR catalyst model with the others

Step	Description	NO (ppm)	NO₂ (ppm)	NH₃ (ppm)	O₂ (%)	H₂O (%)	CO₂ (%)
а	cool + stabilize	0	0	0	10	5	5
b	NH ₃ adsorption	0	0	420	0	5	5
с	NH ₃ oxidation	0	0	420	10	5	5
d	NH ₃ desorption	0	0	0	10	5	5
е	NO oxidation	350	0	0	10	5	5
f	SCR α=1.2	350	0	420	10	5	5
g	SCR α=0.8	350	0	280	10	5	5
h	SCR α=1.0	350	0	250	10	5	5
i	NH ₃ inventory	350	0	0	10	5	5
j	NO2/NOx = 1	175	175	0	10	5	5
k	SCR α=1.2	175	175	420	10	5	5
I	SCR α=0.8	175	175	280	10	5	5
m	SCR α=1.0	175	175	250	10	5	5
n	NH ₃ inventory	175	175	0	10	5	5

State-of-the-art Cu SCR Catalyst Research

- First open literature studies of the latest Cu SCR catalyst
 - The current production Cu SCR catalyst is based on CHA zeolite.
 - Cu-SSZ-13 prepared and evaluated for various SCR reactions → J. Catal. 275 (2010)187-190
- Detailed characterization of active sites in progress
 - TPD, TPR of model Cu-zeolite catalysts
 - In situ XRD and EXAFS experiments at Brookhaven's NSLS

Hg. 1. NO₂ conversion profiles for Cu-SSZ-13 (squares.) Cu-beta (circles), and Cu-ZSM-5 (triangles) at various temperatures in a gas mixture containing 330 ppm NO. 350 ppm NH₂. 148 O₂ and 2% H₂O with a balance of N₂.

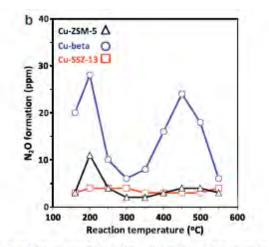


Fig. 2. NO₂ (a) and N₂O (b) formation profiles during NH₂ SCR on Cu-SS2-13 (squares). Cu-beta (circles) and Cu-ZSM-5 (triangles) at various temperatures in a gas mixture containing 350 ppm NO, 350 ppm NH₂ 14% O₂, and 23° H₂O with a balance of N₂.

Proudly Operated by Battelle Since 1965

Lean NOx Traps

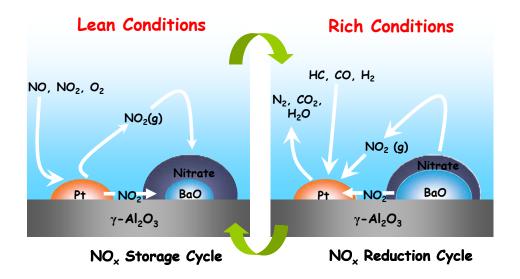
FY2010/2011 Scope Objectives

Selective Catalytic Reduction (SCR)

- Update our SCR model for the state-of-the-art Cu SCR catalyst, and develop kinetics models to describe the performance degradation due to the competitive adsorption and catalyst aging
- Conduct detailed characterization of the Cu SCR catalyst with emphasis on the active sites and its deactivation

Lean NOx Trap (LNT)

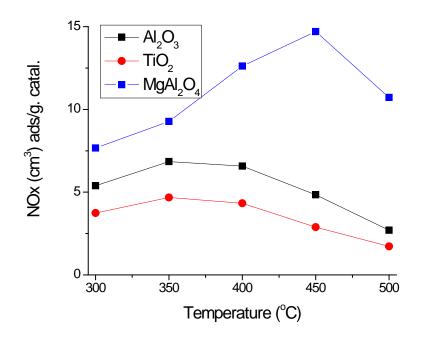
- Investigate CO₂ and H₂O effects on BaO morphology changes and NOx storage properties
- Fundamental studies of novel high-temp LNT catalyst materials


Diesel Particulate Filter (DPF)

- Evaluate the accuracy of unit collector model with respect to nano-sized particulates, and improve the accuracy of mico-scale model for prediction of soot-catalyst contact
- Characterize soot chemistry and structure relevant to exhaust system performance and regeneration

Approach

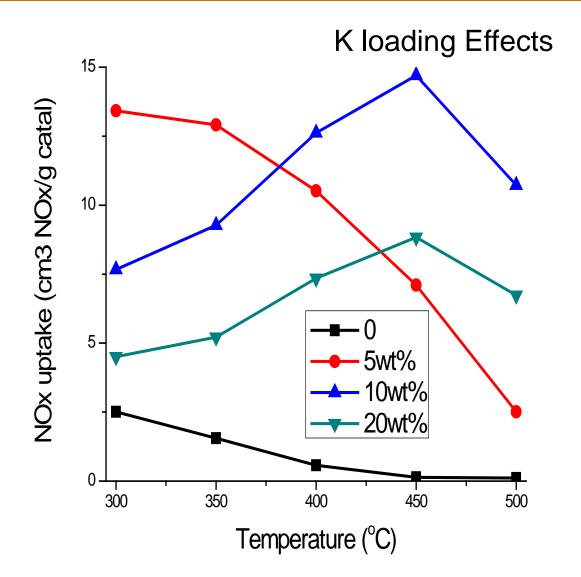
- Higher temperature NOx reduction performance required for:
 - Difficult to meet "not to exceed" regulations during desulfations
 - Possible use of LNTs for lean-gasoline applications



- PNNL/Cummins/JM CRADA focusing on degradation of possible materials for next-generation high temperature LNTs.
- CLEERS studies are addressing more fundamental issues of these potential new LNT materials related to composition, morphology, and chemical reaction kinetics and mechanisms.
- For these studies, PNNL has prepared a range of materials based on literature and prior CLEERS work at PNNL.

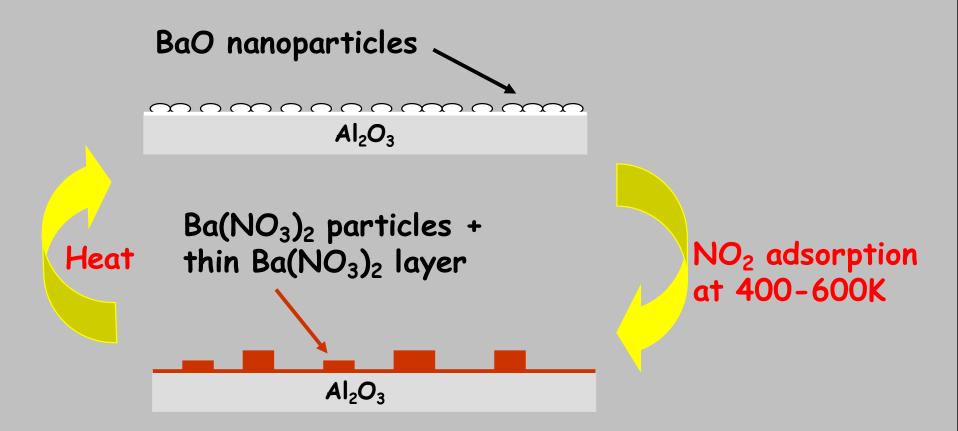
High Temperature LNT Catalyst Materials

- K-based LNTs known to exhibit higher temperature performance
- Recent literature reports suggest titania (TiO₂) may be a better support for K-based LNTs than alumina (Al₂O₃)
- Prior CLEERS studies on Ba-based LNTs at PNNL have suggested MgAl₂O₄ as a promising support material for high temperature application

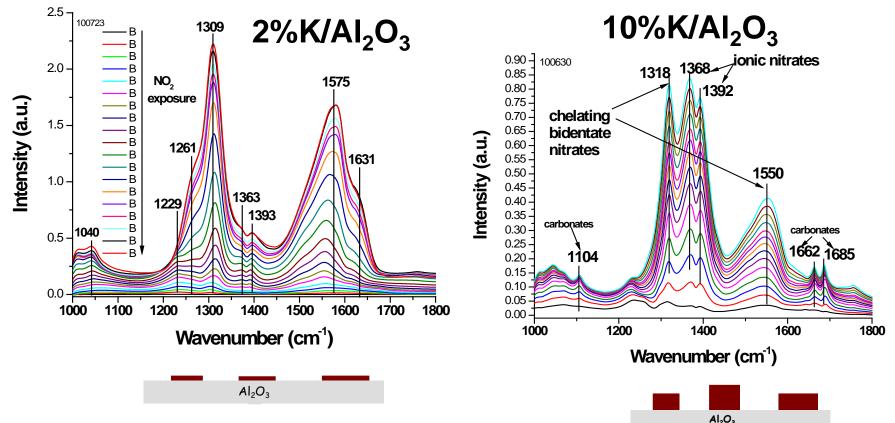


- Superior activity of MgAl₂O₄supported LNT relative to Al₂O₃- and TiO₂-supported samples over all temperatures.
- Moreover, maximum NOx uptake activity at a considerably higher temperature of 450 °C.

Institute for INTERFACIAL CATALYSIS


K-loading effects on MgAl₂O₄ support materials

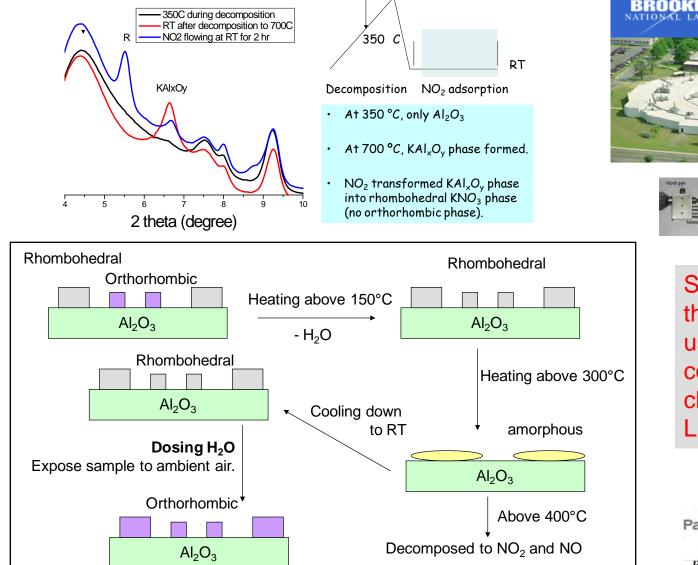
- We're not aware of prior systematic studies of K-loading.
- Negligible MgAl₂O₄ contribution in NOx uptake at high temperature
- Drastic difference between 5 wt% and 10 wt%
- Higher loading than 10 wt% does not improve the activity.


Significant Morphology Changes During Operation of Ba-Based LNTs Were Observed in our Prior CLEERS Studies

Szanyi, Kwak, Hanson, Wang, Szailer, Peden, J. Phys. Chem. B 109 (2005) 7339-7344.

Similar to Ba, FTIR Spectral Changes Consistent with Multiple K-oxide Phases

FTIR spectra of NO₂ adsorbed on K(2 or 10)/Al₂O₃ samples



2 wt% K: mostly bidentate nitrates \rightarrow surface nitrates? 10 wt% K: ionic nitrates and bidentate nitrates \rightarrow surface and bulk nitrates?

Pacific Northwest NATIONAL LABORATORY

Complex Morphology Changes in K/Al₂O₃

Morphology change of K phase during decomposition and formation of nitrate

To mass spectrometer X-ray Synchrotron XRD at the NSLS is being

used to study the

LNTs

complex morphology

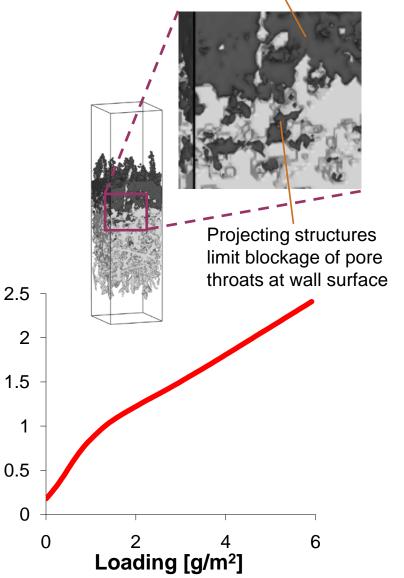
changes in K-based

INTERFACIAL CATALYSIS

Diesel Particulate Filter

Approach

- Conduct bench reactor soot experiments
 - Soot oxidation w/ NOx correlated by surface area
 - HC Absorption
- Examine soot nano-structure using TEM and advanced image analysis techniques
- Improve pore-scale filter dynamics tools through:
 - Characterization of necessary microstructure resolution and sample size for accurate predictions in various media
 - Validation and enhancement of particle capture mechanics
 - Validation of particle motion Brownian dynamics algorithm
- Collect structural data for filter substrates using:
 - Micro/nano X-ray computed tomography
 - Porosimetry
- Carry out fundamental single cell filtration experiments using reproducible lab-generated aerosols



Pore-Scale DPF Model Development

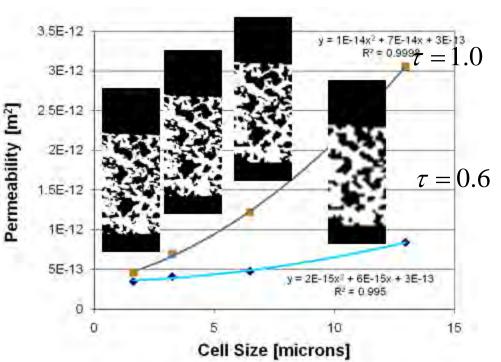
Back-pressure [kPa]

- Numerous pore-scale DPF simulations have been carried out to date using the Lattice-Boltzmann method
- Pore networks have been resolved down to a few microns
- Qualitative features in backpressure, deposit morphology, and soot penetration into filter walls have been reproduced
- Insight into pore-scale mechanisms has assisted in the development of systems and new materials

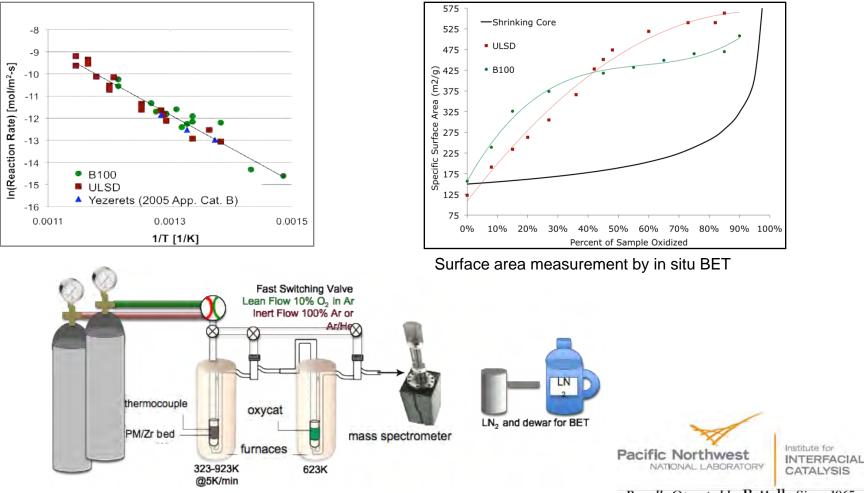
Structure supports soot cake

Pore-Scale DPF Model Development (cont'd)

- Recent studies suggest requirements for quantitative pore-scale simulations:
 - Sintered granular materials (SiC) are easier to simulate than cordierite
 - Cordierite may require resolutions < 1 um and domain sizes of over 1 mm (>0.5E+9 computational cells)
- Adjustment of lattice-Boltzmann parameters may allow lower resolutions at the expense of shorter time-steps


Fortunately, cost and availability of massively parallel computational resources are rapidly becoming more favorable

 \rightarrow Precise quantitative performance predictions from pore-scale simulations may be just around the corner


Institute for INTERFACIAL CATALYSIS

Predicted permeability vs. computational cell size for cordierite

Kinetic Measurements & Surface Area

- Bench reactor soot experiments (in progress)
 - Soot oxidation w/ NOx correlated by surface area
 - HC adsorption

Conclusion & Future Work

Conclusions

SCR

- Developed single site kinetic models to describe the effects of competitive adsorption on NOx reduction on Fe SCR catalyst
- Currently developing Cu SCR model using data obtained by CLEERS transient reactor protocol with ORNL
- First open literature investigation of the state-of-the-art Cu SCR catalyst with emphasis on the active sites

LNT

- Mg/Al₂O₄ identified as a very promising support material for Kbased LNTs in high-temperature applications
- Initial structural studies of K-based LNTs indicate very complex morphology changes

DPF

Recently collected soot from HDD engine at MTU for characterization of soot chemistry and structure relevant to exhaust system performance and regeneration

Institute for INTERFACIAL CATALYSIS

Future Work

SCR

- Update the kinetics for Cu SCR model with ORNL's data, and develop kinetics models to describe the performance degradation due to the competitive adsorption and catalyst aging
- Continue to conduct detailed characterization of the Cu SCR catalyst with emphasis on the active sites and its deactivation

LNT

- Complete studies of CO₂ and H₂O effects on BaO morphology changes and NOx storage properties
- Continue fundamental studies of morphology changes and NOx uptake mechanisms of novel high-temp LNT catalyst materials
- Investigate the formation and stability of PGM particles (also relevant to DOC, TWC)

DPF

- Evaluate the accuracy of unit collector model with respect to nano-sized particulates, and improve the accuracy of mico-scale model for prediction of soot-catalyst contact
- Characterize soot chemistry and structure relevant to exhaust system performance and regeneration

Acknowledgements

PNNL

Josef Beranek, Shelley Carlson, Maruthi Devarakonda, Haiyang Zhu, Do Heui Kim, Ja Hun Kwak, Gary Maupin, George Muntean, Andrea Strzelec, Janos Szanyi, Diana Tran, Alla Zelenyuk

ORNL

Stuart Daw, Josh Pihl, Todd Toops and support from the ORNL team

Industry

Giovanni Cavataio (Ford), Patrick Burk, Sanath Kumar (BASF), Owen Bailey (Umicore)

DOE Vehicle Technologies Program Gurpreet Singh and Ken Howden

