CLEERS: Aftertreatment Modeling and Analysis

Maruthi Devarakonda, Darrell Herling, Ja Hun Kwak, George Muntean (P.I.), Chuck Peden, Mark Stewart, Janos Szanyi, Diana Tran Pacific Northwest National Lab May 16, 2012

ACE023

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Status: On-going core R&D
- DPF activity originated in FY03
- Now also includes LNT, SCR and DOC technologies

Budget

- FY11 funding \$750K
- FY12 funding allocation \$750K
 - SCR task 60%
 - LNT task 30%
 - DPF task 10%

Barriers

- Emission controls contribute to durability, cost and fuel penalties
 - Low-temp performance of particular concern
- Improvements limited by:
 - available modeling tools
 - chemistry fundamentals
 - knowledge of material behavior
- Effective dissemination of information

Partners

- DOE Advanced Engine Crosscut Team
- CLEERS Focus Group
- 21CTP partners
- USCAR/USDRIVE ACEC team
- Oak Ridge National Lab

Goal and Relevance

"CLEERS is a R&D focus project of the Diesel Cross-Cut Team. The overall objective is to promote development of improved computational tools for simulating realistic full-system performance of lean-burn engines and the associated emissions control systems."

CLEERS PNNL Subprogram Goal

Working closely with our National Lab partners, the CLEERS industrial/academic team and in coordination with our CRADA portfolio, PNNL will...

...provide the practical & scientific understanding and analytical base required to enable the development of efficient, commercially viable emissions control solutions and modeling tools for ultra high efficiency vehicles.

- VT program goals are achieved through these project objectives:
 - interact with technical community to indentify relevant technological gaps
 - understand fundamental underlying mechanisms and material behavior
 - develop analytical and modeling tools, methodologies, and best practices
 - apply knowledge and tools to advance technologies leading to reducing vehicle emissions while improving efficiency
- Specific work tasks in support of the objectives are arrived at through:
 - focus group industrial monthly teleconferences, diesel X-cut meetings
 - yearly workshops and surveys

3

submission of SOW to the VT office

INTEGRATED CATALYSIS

Technical Milestones & Approach

- The overall performance measure of the project is inextricably linked to the interests of industry
 - PNNL CLEERS activities have resulted in the formation of new CRADAs
 - Tremendous success of the annual workshops
 - Strong participation in the monthly teleconferences
- Specific performance measures are developed with the industrial/academic partners and captured in SOW
 - Specific technical targets and major milestones are described in our AOPs and annual reports to VT
- Approach "Science to Solutions"
 - We build off of our strong base in fundamental sciences and academic collaborations
 - Institute for Integrated Catalysis (IIC)
 - Environmental Molecular Sciences Laboratory (EMSL)
 - With a strong pull towards industrial applications and commercialization
 - OEMs

4

- TIER 1 suppliers
- Working closely with our partners and sponsors
 - ORNL (coordination of website, workshops, etc.)
 - DOE Advanced Engine Cross-Cut Team

PNNL FY12 Portfolio

CLEERS activity

Integrated Systems – George Muntean

- DPF subtasks* Mark Stewart
- SCR subtasks* George Muntean
- LNT subtasks Chuck Peden

*PNNL-led subteam

**Past activities

CRADA activities

DPF – DOW Automotive (Stewart)**

Fuel Neutral Particulate study (Stewart)

SCR/DPF – PACCAR (Rappe)

SCR, HC – Ford Motor Company (Peden)

SCR, DOC – General Motors (Peden)**

SCR Dosing Systems – GM & Ford (Autrey)

LNT - Cummins Inc. (Peden)

Oxidation Catalysts

- General Motors (Herling)

- SDC Materials (Herling)

- Caterpillar (Rappe)**

Institute for INTEGRATED CATALYSIS

Cat

FY2011/2012 Scope Objectives

Selective Catalytic Reduction (SCR)

- Develop a model based on single NH₃ storage site for the state-of-the-art Cu SCR catalyst based on CLEERS SCR transient protocol data
- Extend the model to incorporate two NH₃ storage sites and use it as a benchmark to model performance degradation for various SCR reaction pathways during catalyst aging
- Initiate detailed kinetic and mechanistic studies for NO reduction over the state-of-the-art small-pore zeolite-based Cu SCR catalysts, including characterization measurements that probe the nature of the active Cu species.

NO_x Storage-Reduction (NSR) Catalysts

- Continue fundamental studies of morphology changes and NO_x uptake mechanisms of novel high-temp LNT catalyst materials
- Investigate the formation and stability of PGM particles (also relevant to DOC, TWC)
- Diesel Particulate Filter (DPF)
 - Investigate particulate oxidation mechanisms for relevant oxidants (O₂, NO₂) through reactor experiments and TEM analysis
 - Seek incremental improvements to OD and detailed 3D filter modeling tools

INTEGRATED CATALYSIS

Technical Accomplishments Outline

SCR

- Developed and validated a Cu SCR model considering a single NH₃ storage site, based on CLEERS SCR transient protocol data from ORNL.
- Investigated the nature of Cu species and obtained kinetic parameters for small-pore zeolite-based Cu SCR catalyst.
- Catalyst characterization has been performed on these catalysts both before and after hydrothermal aging.

NSR

- Examined the effects of support materials for Ba-based LNT catalysts, and found magnesium aluminate may improve the NO_x reduction performance at high temperatures.
- Performed systematic studies of K loading effects on NOx storage performance for both alumina- and magnesium aluminate-supported NSR catalysts.
- Initiated detailed characterization studies of K-based NSR catalysts including in-situ XRD measurements.

DPF

- Kinetics experiments were carried out for medium duty and light duty diesel particulate samples
- Advanced TEM analysis was used to examine evolution of particulate nano-structure during oxidation

Selective Catalytic Reduction

- modeling studies
 - overall goal is to develop catalyst aging factors, essential for model based control adaptation, using 1D SCR models.
 - transient protocol and TPD data collected on Cu-CHA samples at ORNL were used to develop the SCR model.
- materials characterization
 - characterization data of Cu-zeolite
 - hydrothermal deactivation

Single Site NH₃ Storage Model

- Model parameters tuned using a TPD test without isothermal desorption (top right)
- Validation on a TPD with isothermal desorption (bottom right)
- Storage dependent desorption kinetics is assumed in the model.

$$\frac{\partial c_{g,NH_3}}{\partial t} = -\frac{u}{\varepsilon} \frac{\partial c_{g,NH_3}}{\partial x} + \frac{\Omega}{\varepsilon} (r_{des} - r_{ads})$$
$$\frac{\partial \theta_{NH_3}}{\partial t} = r_{ads} - r_{des}$$
$$r_{ads} = A_{ads} c_{g,NH_3} (1 - \theta_{NH_3})$$
$$r_{des} = A_{des} e^{\frac{-E_{des} (1 - \gamma \theta_{NH_3})}{RT}} \theta_{NH_3}$$

A_{ads}	m³/mol/s	0.99
A_{des}	1/s	1.01E11
\mathbf{E}_{des}	kJ/mol	180.2
Y	-	0.81
° Ω	mol/m ³	225

Time (Min)

SCR Reaction Pathways

 In addition to NH₃ adsorption and desorption on SCR catalyst surface, the following reactions have been incorporated in this Cu SCR model

NH ₃ oxidation	$2NH_3 + 3/2O_2 \rightarrow N_2 + 3H_2O$
NO oxidation	$NO + 1/2O_2 \leftrightarrow NO_2$
Standard SCR	$4NH_3 + 4NO + O_2 \rightarrow 4N_2 + 6H_2O$
Fast SCR	$4NH_3 + 2NO + 2NO_2 \rightarrow 4N_2 + 6H_2O$

• The following slides show the kinetic model development for each of these reactions

Kinetic Models for NH₃ and NO Oxidation

Kinetic Models for SCR Reactions

Standard SCR Fast SCR 350 ppm NO, 350 ppm NH₃, 10% O₂, 5% CO₂, 5% H₂O, 60k 175 ppm NO, 175 ppm NO₂, 350 ppm NH₃ 10% O₂ 5% CO₂ SV 5% H₂O, 90k SV 100 100 80 80 Conversion (%) Conversion (%) 60 60 NO_v, Model NO_v, Model NO., Test NH₂, Model NO_., Test 40 40 NH₂, Test NH_a, Model Test data from ORNL NH₂, Test 20 20 0∟ 150 200 350 200 250 300 400 450 500 550 250 300 350 450 500 400 550 Temperature (°C) Temperature (°C)

• Standard SCR pre-exponential was manually adjusted at 150°C, 30k/hr SV and the model was validated at the remaining data points.

- Model (Standard SCR) mismatch in NO_x conversion at T > 450°C was observed at higher space velocities, possibly due to NH₃ oxidation to NO, which is not considered in the model.
- NO₂-SCR kinetic model was included for better match at low temperatures. At high temperatures NO₂-SCR can be neglected.
- No parameter tuning was done for Fast SCR & NO₂-SCR reactions. Parameters from Olsson et al., (2008) on Cu-Z SCR model were used in the model directly.

SCR Model Validation Against CLEERS Transient Protocol

Current Work – SCR Model using Two NH₃ Storage Sites

- Recent data on a fresh catalyst sample (NH₃ desorption vs temperature during TPD shown on the left) shows two peaks indicating the possibility of more than one active site with different stabilities in the catalyst.
- The two peaks convolute into one as the sample is degreened and aged as shown in the figure.
- This has motivated us to develop a model with two NH₃ storage sites so that the aging effect on NH₃ storage and other reaction pathways can be accurately predicted.

Institute for INTEGRATED CATALYSIS

State-of-the-art Cu SCR Catalyst Research

- Both Cu-SSZ-13 and Cu-SAPO-34 catalysts synthesized and studied at PNNL these model catalysts allow for fundamental studies of their catalytic and material properties
 - Both CHA zeolites synthesized by published hydrothermal methods.
 - Cu loaded into SSZ-13 via aqueous ion exchange
 - Cu loading into SAPO-34 is difficult; we added Cu during zeolite synthesis.
- Results to date have included:
 - NO_x SCR performance as a function of Cu loading and hydrothermal treatments (publication on this work has been released)
 - Characterization of the Cu species as a function of Cu loading by temperatureprogrammed reduction (TPR) and EPR spectroscopy measurements (three slide shown in the back-up section)
 - Characterization of various Cu-zeolite catalysts before and after hydrothermal aging via XRD, ²⁷Al NMR, and TPR.

"Standard" SCR Reaction – Fresh Catalysts

- Cu/ZSM-5, Cu/beta and Cu/SSZ-13 are roughly equivalent in performance.
- Very low N₂O formation over Cu/SSZ-13 and Cu/ZSM-5.
- \triangleright Cu/Y has low activity at higher temperatures due primarily to N₂O production.
- Effects of hydrothermal aging?

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis 287 (2011) 203.

INTEGRATED CATALYSIS

"Standard" SCR Reaction – Hydrothermally Aged (HTA)

- Cu/SSZ-13 catalyst is quite stable to HTA
- Further reduction of performance for the other Cu catalysts due, in part, to increased N₂O formation after HTA
- Essentially complete loss of Cu/Y activity after HTA

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis 287 (2011) 203.

INTEGRATED CATALYSIS

XRD and ²⁷Al NMR after Hydrothermal aging

- Cu/Y: peaks for CuO + broad background
- At most, small changes in the XRD patterns for the other zeolites.
- However, ²⁷Al spectra indicate partial loss of zeolite structure for Cu/ZSM-5 and Cu/beta

²⁷AI NMR

 Cu/ZSM-5 and Cu/beta both show a significant drop in the ²⁷Al peak due to tetrahedral aluminum (zeolite structure loss)

No change in the spectrum for Cu/SSZ-13 after HTA

As prepared (black curves); After hydrothermal treatment (red curves)

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis 287 (2011) 203.

NO_x Storage-Reduction (NSR) Catalysts {aka. LNT}

Conventional Ba-based NSRs operate best between 350 and 400°C; K-based NSRs show potentially much better performance at higher temperatures

Toyota: Top Catal. 28(2004)151

Approach

- Higher temperature NO_x reduction performance required for:
 - Difficult to meet "not to exceed" regulations during desulfations
 - Possible use of NSRs for leangasoline applications

- PNNL/Cummins/JM CRADA focusing on degradation of possible materials for next-generation high temperature NSRs.
- CLEERS studies are addressing more fundamental issues of these potential new NSR materials related to composition, morphology, and chemical reaction kinetics and mechanisms.
- For these studies, PNNL has prepared a range of materials based on literature and prior CLEERS work at PNNL.

Institute for INTEGRATED CATALYSIS

High Temperature NSR Catalyst Materials

K/Pt/Al₂O₃ (2%, 5%, 10%, 15%, 20%, weight):

- Pt/Al_2O_3 (1%): Impregnation of Al_2O_3 (150 m²/g) with $Pt(NH_3)_4(NO_3)_2$, 500°C calcination for 4hrs
- **K loading**: Impregnation of Pt/Al₂O₃ with K₂CO₃ of different K loadings, 600°C calcination for 4hrs
- K/Pt/MgAlO_x (2%, 5%, 10%, 15%, 20%, weight):
 - **MgAIO_x Support** (Pural MG30: Mg/Al=0.6): Calcination at 600°C for 4hrs
 - **K and Pt loading**: as with the alumina-supported catalysts
- NO_x storage performance testing and catalyst characterization by KNO₃-TPD (decomposition), NO_x TPD (after NO₂ adsorption), XRD and TEM
- Aging and sulfur tolerance being studied as part of Cummins CRADA.
- Will emphasize recent performance data today.

INTEGRATED CATALYSIS

Effect of K loading on Al₂O₃-Supported NSRs

- Optimum operating T increases with K loading until 10%, then stays at 450°C with K loading higher than 10%.
- 10% K/Pt/Al₂O₃ exhibits best overall performance in the whole temperature range, especially between 400 and 450°C.

Effect of K loading on MG30 (MgAlO_x)- Supported NSRs

- Similar to Al₂O₃-supported catalysts, optimum operating T increases with K loading to 15%, then stays at 500°C with higher K loading.
- 15% K/Pt/Mg30 exhibits best overall performance above temperatures of 400°C.
- Maximum uptake is higher for 15% K/Pt/Mg30 than for 10% K/Pt/Al₂O₃

INTEGRATED CATALYSIS

Unlike Ba, nitrates of K 'melt' at temperatures significantly below their decomposition.

Temperature-programmed decomposition of K-nitrates on Al₂O₃

665 00-004-0877> Al₂O₃ - Aluminum Oxid 5 % KNO₃/Al₂O₃ 0-032-0824> KNO3 - Potassium Nitrat 200 ppm **Orthorhombic KNO₃** 750- 450 °C 400 °C 460 350 °C NO_x (a.u.) rsity(Counts) 630 325 °C 20% KNO₂/Al₂O₂ 300 °C 275 °C 250 °C 10% KNO₃/Al₂O₃ 200 °C 610 150 °C 100 °C 5% KNO₃/Al₂O₃ 25 °C 450 150 300 600 750 Two-Theta (deg) Bulk KNO₃ melting point: 334°C Temperature (°C)

- Decomposition of K-nitrates occur above 400 °C.
- XRD features due to K-nitrates disappear at temperatures below 300 °C.

In-site XRD during the decomposition of K-

nitrates on Al₂O₃

INTEGRATED CATALYSIS

Diesel Particulate Filter

O₂ versus NO₂ TPO experiments

- Temperature Programmed Oxidation experiments conducted with LD particulate from various biodiesel blends
- O₂ oxidation is dramatically affected by biodiesel content (which changes the primary particle structure)
- NO₂ oxidation is not sensitive to fuel blend
- Differences in low temperature peak correspond to increasing VOF content

Institute for INTEGRATED CATALYSIS

HR-TEM examination of partially oxidized MDparticulate

- Particulate (collected at MTU) was partially oxidized (50% mass remaining) in a flow through reactor
- Fundamentally different evolution of nano-structure with the two oxidants
- Less reactive O₂ preferentially oxidizes locations if higher reactivity, highly reactive NO₂ seems to react indiscriminately on contact

Quantitative image analysis

- Advanced image analysis allows qauntification of nano-structural metrics
- Fringe length is a measure of the extent of graphene sheets
- Tortuosity measures sheet curvature
 - Particulate oxidized by O₂ has fewer short and highly curved lamella
 - O₂ appears to attack areas of higher reactivity
 - NO₂ is indiscriminate and tends to break up graphene layers on contact (diffusion limited)

Evolution of surface area during oxidation

- Surface area measured by BET at points in the particulate burnout
- Previous work has shown that surface area evolution during O₂ oxidation depends on engine and fuel and does <u>not</u> follow the shrinking core model
- Very different surface area development during NO₂ oxidation, consistent with the shrinking core prediction, also shown in the HR-TEM images

Conclusion & Future Work

Conclusions

SCR

- Developed and validated a Cu SCR model considering a single NH₃ storage site, based on CLEERS SCR transient protocol data from ORNL.
- Currently extending the SCR model to two NH₃ storage sites for future studies involving performance degradation due to catalyst aging.
- Cu-CHA zeolites display a number of enhanced properties compared to other zeolite-based catalysts, including improved selectivity (low N₂O production) and significantly better hydrothermal stability.
- Our recent TPR, FTIR and EPR studies give strong evidence for the presence of multiple Cu species in CHAbased catalysts. Their various roles for optimum performance are being explored.

NSR

- Unlike Ba-based NSRs, the temperature for optimum performance of Al₂O₃-supported K NSR catalysts show a large and unexpected dependence on loading.
- MgAl₂O₄ support materials provide for even higher temperature performance of K-based NSRs, and also show the unusual dependence on K loading.
- Characterization of these potential high-temperature NSR catalysts has been initiated to understand their interesting properties; also important for determining mechanisms of failure.
- DPF
 - Due to the highly reactive and indiscriminate nature of NO₂, particulate reactivity for NO₂ oxidation seem to independent of fuel type. This is unlike O₂ oxidation, which depends on the exposed reaction surface area, which has been shown to depend on biodiesel blend level.
 - Fundamentally different oxidation modes appear to be involved in oxidation of diesel particulate by NO₂ and O₂

Future Work

SCR

- Develop and validate SCR aging models based on CLEERS transient protocol data.
- Identify critical rate/model parameters that need to be adapted for catalyst aging/deactivation and develop maps/math expressions to support model-based controls.
- Publish the modeling methodology and results in a peer-reviewed scientific publication.
- Continue studies of the active Cu species in the CHA-based catalysts, including new studies of SAPO-34 zeolite catalysts.
- Initiate studies of the reaction mechanism for these catalysts; low NO oxidation activities for these catalysts suggest a fundamentally different chemical process.

NSR

- Continue catalyst characterization to determine origins of optimum high temperature performance of Kbased NSRs.
- Initiate studies of ways to control the mobility of K in this class of NSR catalysts which is a significant concern for their practical application.

DPF

- Characterize current production and advanced DPF substrates through advanced image and statistical analysis of high resolution Computed Tomography (CT) data
- Investigate the use of micro-scale simulation to improve the commonly used unit collector models for DPF substrates

Acknowledgements

PNNL

Andrea Strzelec (now at TA&M), Josef Beranek, Shelley Carlson, Haiyang Zhu, Do Heui Kim, Gary Maupin, Alla Zelenyuk, Feng Gao

ORNL

Stuart Daw, Josh Pihl, and support from the ORNL team

Academia

Randy Vander Wal (Penn State)

Industry

Giovanni Cavataio (Ford), Patrick Burk, Sanath Kumar (BASF)

DOE Vehicle Technologies Program Gurpreet Singh and Ken Howden

INTEGRATED CATALYSIS

Technical Back-up Slides

Reduction of Cu Species Varies Considerably with Zeolite Type

- Cu/beta and Cu/ZSM-5 fully reduced to Cu⁰ by 500 °C; according to Iglesia and coworkers, the two main features are due $Cu^{+2} \rightarrow Cu^{+1}$ and $Cu^{+1} \rightarrow Cu^{0}$. Catalyst powders were colored after reduction.
- Cu in Cu/Y and Cu/SSZ-13 remained as Cu⁺¹ even after TPR to 700 °C.
 - Two peaks for Cu/Y due to two Cu species (in super- and sodalite-cages)
- Cu/SSZ-13 also has two peaks which may be two sites; *however, recent studies by Lobo and coworkers suggest a single Cu site*.

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis 287 (2011) 203.

INTEGRATED CATALYSIS

Effect of Hydrothermal Aging on the Reduction of Cu Species in the various Zeolites Studied Here

- CuY only shows features due to reduction of bulk-like CuO.
- TPR of Cu/SSZ-13 remains essentially unchanged after hydrothermal aging, and powders are still white after reduction during TPR to 700 °C.
- Cu/ZSM-5 also shows evidence for bulk-like CuO along with other peaks likely associated with Cu still near ionexchange sites in the zeolite.
 - Changes in TPR for Cu/beta are particularly significant.

JH Kwak, D Tran, SD Burton, J Szanyi, JH Lee, CHF Peden, Journal of Catalysis 287 (2011) 203.

INTEGRATED CATALYSIS

Effect of Cu Loading on the Reduction of Cu Species in Cu-SSZ-13 Zeolites Catalysts

- At low loading, only a single H₂ TPR reduction peak at ~340 °C.
- At higher loadings, a second TPR peak appears at ~230 °C, which monotonically increases in size with increasing Cu loading.
- However, recent literature from Lobo and coworkers has suggested a single Cu site in SSZ-13 CHA zeolite.
- Our TPR results are consistent with our recent FTIR and EPR spectroscopic measurements (not shown here).

JH Kwak, H Zhu, JH Lee, CHF Peden, J Szanyi, Chemical Communications, submitted (2011).

INTEGRATED CATALYSIS