

Super Truck Program: <u>Vehicle Project Review</u>

Recovery Act –Class 8 Truck Freight Efficiency Improvement Project

Derek Rotz (*PI & Presenter*) Dr. Maik Ziegler Daimler Truck North America LLC May 16th, 2013

Project ID: ARRAVT080

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start: April 2010
- Project end: March 2015
- Percent complete: 60%

Budget

- Total project \$79,119,736
- Vehicle budget \$47,486,735
 - DOE share^(*) \$10,430,000
 - DTNA share ^(*) \$10,430,000

(*) through Feb, 2013 for vehicle R&D expenses only, engine R&D expenses reported separately

Barriers

- Resolve thermal & fluid dynamics tradeoffs between aero
 & cooling
- Rejecting more heat in a smaller, aerodynamic hood & engine compartment
- Development of safe and efficient high voltage power distribution, integrating multiple HV energy sources
- · Making tradeoffs between efficiency, cost and weight
- Vehicle controls integration (aux, hybrid, powertrain, waste heat, predictive)

Partners

- Detroit Diesel
- Schneider National, Walmart
- National Renewable Energy Lab
- Oregon State University
- Strick Trailer
- Michelin

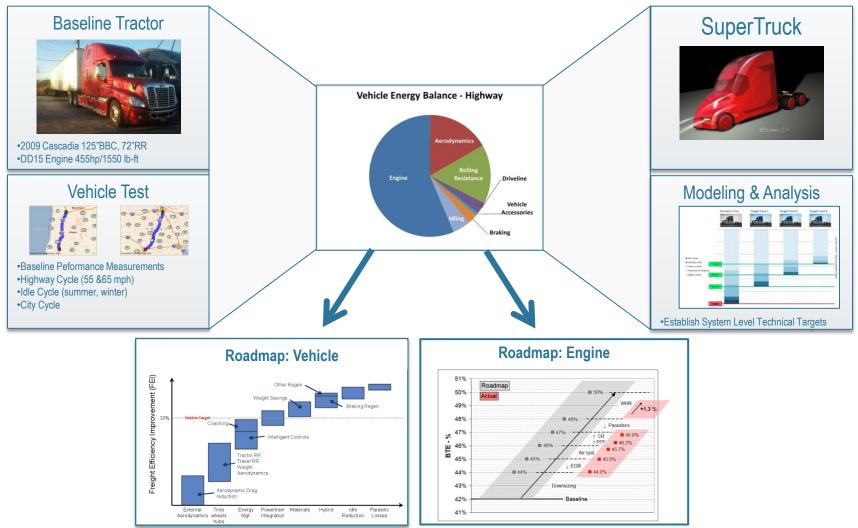
2

Objectives and Milestone

Develop and demonstrate a 50% total increase in vehicle freight efficiency:

• At least 20% improvement through a heavy-duty diesel engine capable of achieving a 50% brake-thermal efficiency

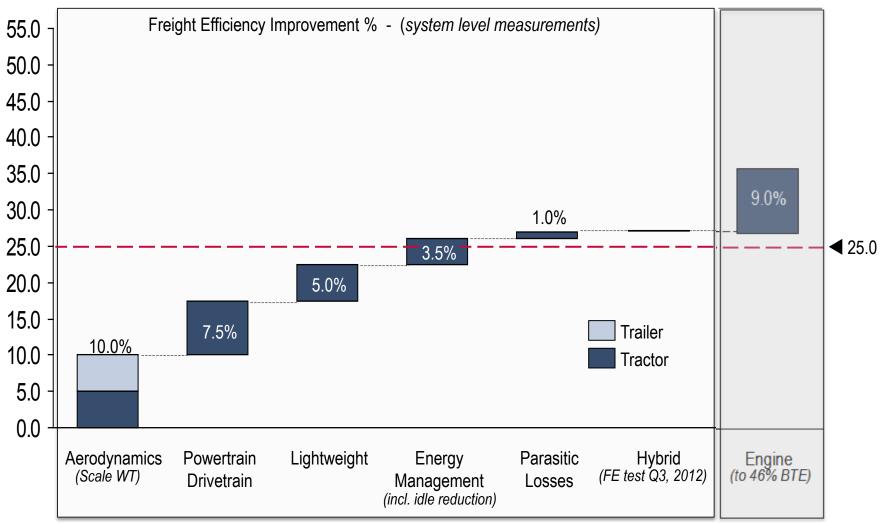
• Identify key pathways towards achieving 55% through modeling and analysis


Timeline	Phase Description	Milestones				
4/10–3/11	Analysis: (1) Technology Modeling/Analysis and Initial Component Development and Demonstration	 Develop analytical roadmap: 50% vehicle freight efficiency improvement 50% engine brake thermal efficiency 				
4/11–3/12	Specification: (2) Experimental Demonstration of Technology Building Blocks for Intermediate Goals	 Experimentally demonstrate technology building blocks: 25% vehicle freight efficiency improvement (system level test) 46% engine brake thermal efficiency 				
4/12–5/13	Design: (3) Technology Identifications and Final Component Development and Demonstration	 Identify and initially develop technology building blocks: 50% vehicle freight efficiency improvement (system level test & analysis) 50% engine brake thermal efficiency 				
6/13–6/14	Build: (4) Experimental Demonstration of Technology Building Blocks for 50% Engine Thermal Efficiency and 50% Vehicle Efficiency	 Experimentally demonstrate technology building blocks: 50% vehicle freight efficiency improvement (system level test) 50% engine brake thermal efficiency 				
7/14–3/15	Test: (5) Final System Integration and Demonstration	 Experimental demonstration: 50% vehicle freight efficiency improvement (entire vehicle test) 50% engine brake thermal efficiency (engine test) 55% engine brake thermal efficiency (engine analysis) 				

Approach

Phase I Milestone Completed

Analytical roadmap development to 50% vehicle FEI & 50% engine BTE


(Engine topics covered in separate session) Daimler Trucks and Buses

Approach

Phase 2 Milestone Status ✓

Experimental testing to 25% vehicle freight efficiency*

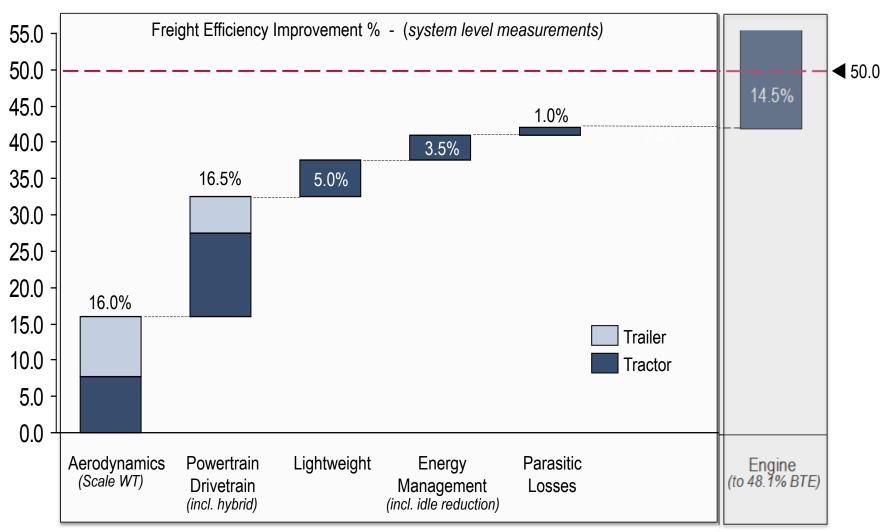
^{*} Covered in last year's (2012) Annual Merit Review

Approach

Phase II Accomplishments*

April 2011 – March 2012

- Tractor/ trailer preliminary aerodynamics analysis and testing
- •Cooling integration (engine, waste heat, a/c, hybrid)
- Lightweight frame concepts
- •Transmission and axle ratio analysis (engine downspeeding)
- •Tire, wheel & hub optimization
- •Hybrid A-sample buildup
- •eHVAC & fuel cell APU testing and down-selection
- Parasitic load reduction for air compressor & power steering
- •Predictive technologies and eco-driver feedback testing


Approach

Phase 3 Milestone Status ✓

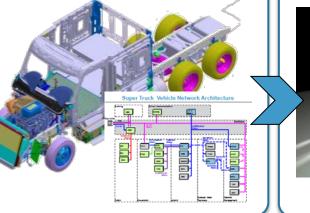
Experimental testing to 50% vehicle freight efficiency

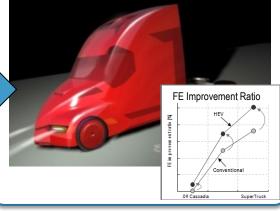
→NEXT STEP: build the truck

Technical Accomplishments and Progress

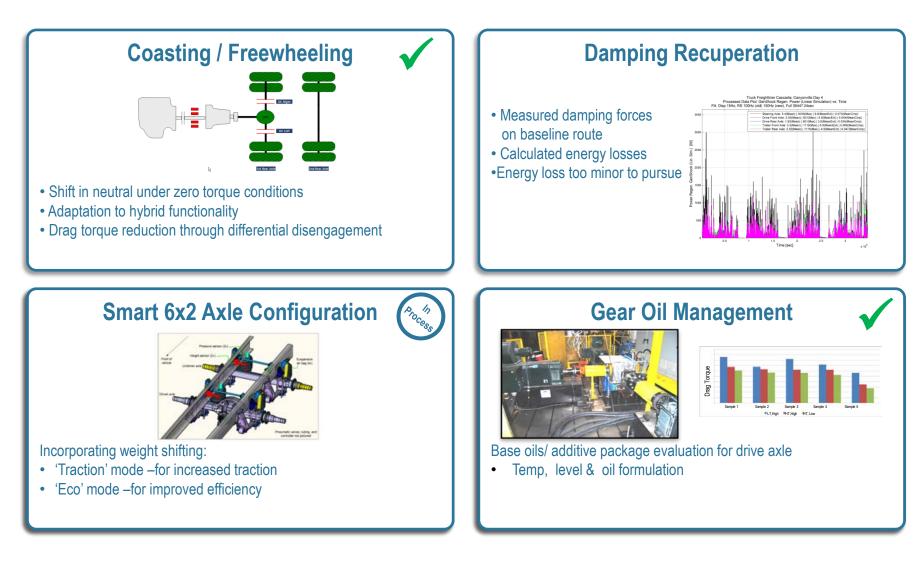
Hybrid Development & Integration Activities

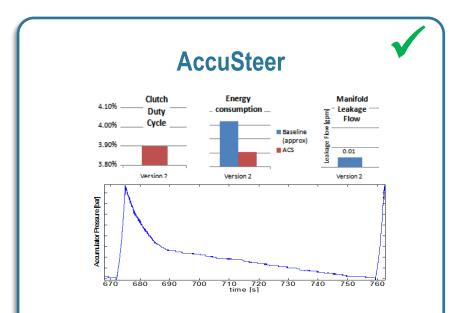
Vehicle: ZZ2210 A-Sample Hybrid System Vehicle: ZZ2215 B-Sample Hybrid System


Vehicle: ZZ2660 DoE Demonstrator Vehicle

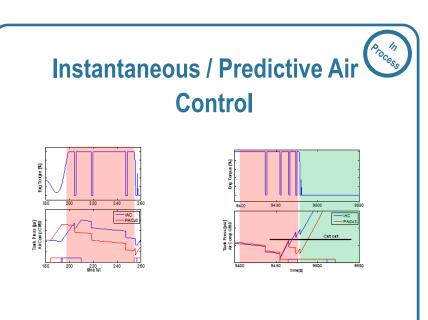

- Base system design and HV vehicle integration
- Functional testing & 5000 mile shakedown complete
- eHVAC testing completed
- FE test completed

- Upgraded HEV components
- WHR in-vehicle integration
- High voltage interfaces
- Thermal interfaces
- Integrated in-vehicle cooling


- Calibration for lower drag torque losses
- Weight optimization



Powertrain Integration Activities



Parasitic Losses

- Closed center steering gear / hydraulic accumulator
- Iterated the design to reduce steering effort
- Installed & completed on-highway performance and effiicency

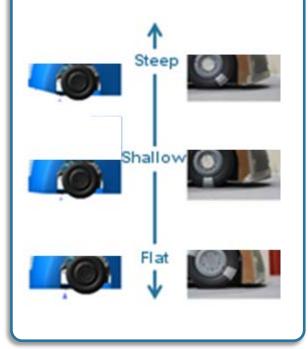
- Intelligent adjustment of cut in / cut out pressures based on predicted torque demand
 - Maximize activiations during coasting
 - Minimize activation at full torque

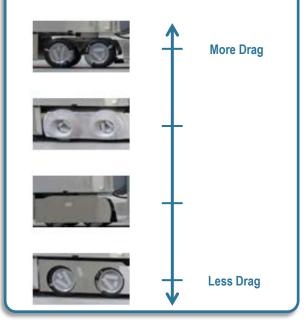
Aerodynamics Analysis of truck exterior systems

Roof, side extender & spoiler, etc...

Side Extender/Roof Spoiler Evaluation side extenders & roof spoiler angles Adjusting radical

• Swept several degrees from nominal




Ramp Angle

Adjusting ramp angle has a large effect on drag

Drive Wheel Fairings

- Provides cover for turbulance created from drive wheels
- Streamline sides of vehicle

Truck Exterior Concept Refinement

Basic Shape			Styling Themes	
Evalua	ton, selection and refinem	multiple styling themes ideated based on engineering surface		
Basic Shape Analysis Outcomes	Notional 1	Notional 3		
Aerodynamics		SlightAdvantage		
Thermodynamics	Advantage in full engine load			
(Ambient Capability)	Equal Performanc	e under partial load		
WHR (Power Gain)	Equal Pe	rformance	SIRAW	
Weight	Equal Performance			
Chassis Packaging		Slight Advantage		
Cab Impact		Advantage		
Technical Risk		Advantage		

- Basic shape analysis complete
- Truck theme selected

 \rightarrow 23% drag reduction measured on tractor in scale wind tunnel / CFD

Vehicle Integration

Exterior Engineering Surface


- Phase 1 Space claim and initial packaging check
- Phase 2 A pillar modification, windshield wipe check, door cutline & swing, mid-chassis modifications, underhood airflow optimization
- Phase 3 Cab roof and sidewall, hood tilt, bumper development, grill, headlights

Chassis Package Package engine compartment systems under aerodynamic hood and with proper ground clearance Powertrain components including hybrid High voltage electrical systems including routing, cooling & HVIL Integration of hybrid, waste heat systems mid chassis • Optimized airflow for engine & a/c intake air, airside exit paths for heat exchangers · Extensive mechanical analysis incl. FEA Lightweight frame rail and cross member assembly

13

Defining Optimal Aerodynamic Trailer Configuration

 \rightarrow 25% drag reduction measured on trailer in scale wind tunnel & CFD

Preliminary SuperTruck Build

Scope & Schedule

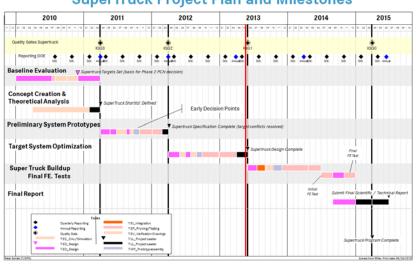
- Engine, waste heat, A/C & hybrid cooling
- High voltage power distribution
- Powertrain / drivetrain optimization
- Shift optimization
- Routing & plumbing

Projects	Jan 2013	Feb 2013	Mar 2013	Apr 2013	May 2 <mark>0</mark> 13	Jun 2013
Truck Assembly				7		
frame, suspension, powertrain						
WHR, hybrid, cooling						
hood, bumper, grill						
"Key On" - Mechanical						
hybrid calibration						
"Key On" - Hybrid				7		
WHR expander + HV integration						
"Key On" - WHR						

SuperTruck Partnerships and Collaborations

- Department of Energy:
- → Roland Gravel
- → Gurpreet Singh
- → Ken Howden
 - → Carl Maronde

Vehicle Summary and Future Work


Successful completion of phase 1&2; Phase 3 targets met

Technology building blocks from 25% to 50% FEI based on system-level measurements through additional improvements in:

- Aerodynamics
- Powertrain / Parasitics / Hybrid
- Engine / Waste Heat Recovery (Engine topics covered in separate presentation)

Next Steps

- Complete the vehicle integration of ENG, WHR, HYB, PT
- Complete buildup of A-sample SuperTruck
- Initiate the buildup of 2 final demonstrator vehicles

