Characterizing Test Methods and Emissions Reduction Performance of In-Use Diesel Retrofit Technologies from the National Clean Diesel Campaign

<u>Michael Geller</u>¹, Britney McCoy¹, Arman Tanman¹, Dennis Johnson¹ Imad Khalek², Kent Spreen²

2012 Directions in Engine-Efficiency and Emissions Research (DEER) Conference

October 19, 2012

¹U.S.EPA, Office of Transportation and Air Quality, 1200 Pennsylvania Avenue, Washington, DC 20460 ²Southwest Research Institute, 6220 Culebra Rd., San Antonio, Texas 78238

Overview

- Introduction
- In-Use Test Objectives
- Test Methods
- Retrofit Emission Reduction Performance
- Conclusions

EPA's Priorities

- Protecting public health and the environment
- Improving air quality
- Reducing exposure to pollutants
- Reducing diesel engine emissions
 - HC, CO, NOx, CO₂, toxics
 - Particulate Matter (PM)

Clean Diesel Technology Assessment Center

- Comprehensive approach to reducing emissions (criteria and GHG) from HD fleets.
- Verification of Retrofit Technologies
 - Verify emission and fuel-saving technologies to inform the market and support incentive programs
- Protocol Development
- In-Use Performance and Testing
 - Research, test and evaluate emission reduction and fuel-saving technologies and strategies
 - EPA In-Use Testing

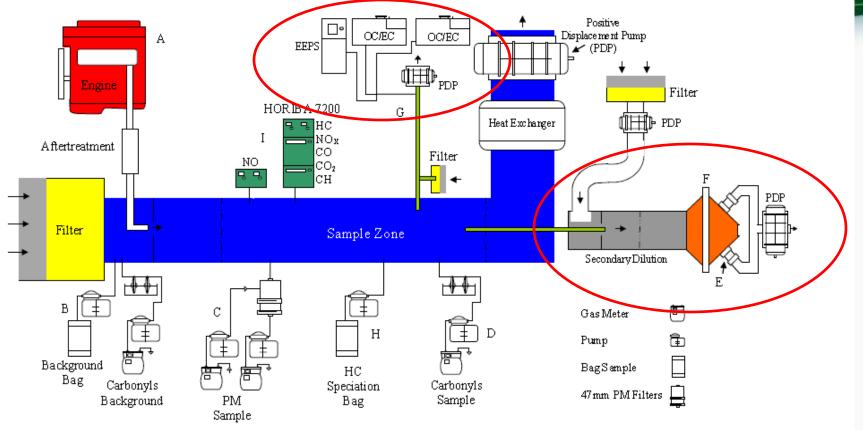
Testing Objectives

- Evaluate test methods and protocols
- Explore improvements to the verification process
- Filling gaps addressing new sectors/technologies
- Increase confidence that technologies perform as expected
- Assess real-world durability

SWITED STATES - SONADE - SONAD

Test Methods

- Engine Dynamometer Testing
 - 40 CFR Part 86 and Part 1065
 - Transient FTP cycles, 1 cold + 3 hot starts
 - Criteria pollutants, PAH sampling, EC/OC, PM number size distributions
- Chassis Dynamometer Testing
 - Test Cycles: Heavy-Heavy Duty Diesel Truck (HHDDT) Cycle; City Suburban Cycle (CSC)
 - Criteria pollutants and fuel economy
- Smoke Opacity Testing
 - SAE 1667
 - Snap acceleration smoke testing using 3 different meters ⁶



Test Engines

Engine Manufacturer	Navistar	Cummins	Caterpillar (chassis test)
Engine Model	T444E B190	ISB 215	3126
Model Year	1999	1999	2002
Displacement	7.3 liter	5.9 liter	7.2 liter
Cylinder Configuration	V-8	Inline 6	Inline 6
Rated Power	190 hp @ 2300 rpm	215 hp @ 2700 rpm	210 hp @ 2400 rpm

Test Devices

- Source application: School Bus
- Location of source fleets: School districts across the U.S., including Pennsylvania, Maryland, Texas and California
- Retrofits originally funded with EPA DERA grants
- DOCs and DPFs

- A 1999 Navistar T444E diesel engine
- B Background bag sample of dilution air for CO, CO_2 , NO_X , NO, N_2O , HC, CH_4 , and speciation of $C_2 C_{12}$ VOCs
- C Regulated PM using Teflo media filter
- D DNPH impinger for carbonyls
- E XAD traps for gas phase semi-volatile PAH compounds
- F Filter (8x10 inch Zefluor) for particulate-phase semi-volatile PAH compounds
- G Secondary dilution tunnel with two OC/EC instruments and one EEPS
- $H \qquad \qquad \text{Proportional bag sample for hydrocarbon speciation of C_1 through C_{12} VOCs and N_2O }$
- I Horiba MEXA 7200 for THC, CO, CO₂, NO_X, and NO

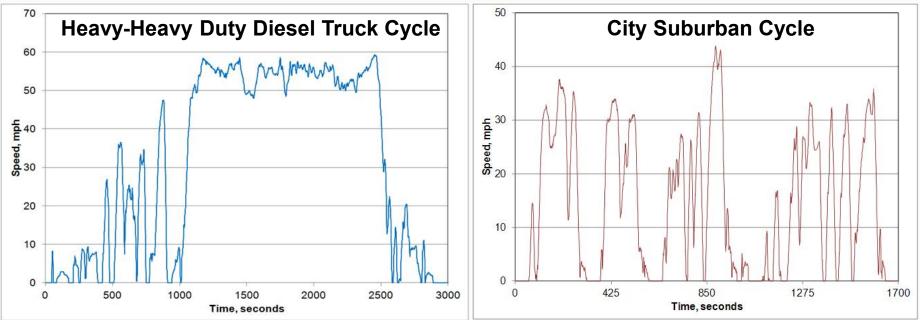
Diagram of Test Set-Up, Source: SwRI

Test Method Evaluation

- 40CFR Part 86 and Part 1065
- Legacy engines certified using Part 86
- Evolution of PM sampling filter media
 - T60A20, Fluorocarbon coated glass fiber filter
 - TX40, PTFE bonded glass microfiber filter
 - Teflon Membrane
- Engine exhaust PM characteristics
 - Organic carbon fraction of PM varies between engines

DOC Test Method Evaluation

Device	Filter Media	PM	НС	СО	SOF
DOC#1	T60A20	20%	76%	63%	29%
DOC#2	T60A20	16%	81%	66%	29%
DOC#3	T60A20	20%	70%	37%	29%
DOC#3	TX40	13%	95%	41%	24%
DOC#4	TX40	11%	95%	41%	24%



PAH Reduction Efficiency: DOCs

Chassis Dynamometer Test Cycles

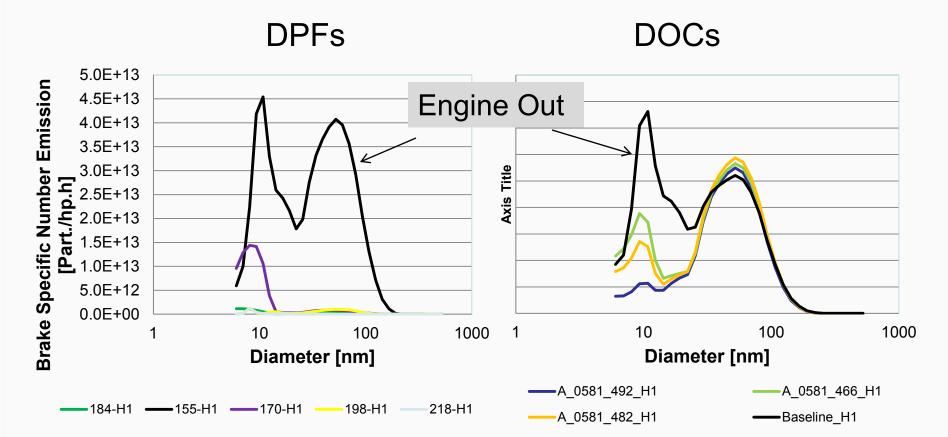
Developed by CARB

Developed by WVU

Chassis Dynamometer Results

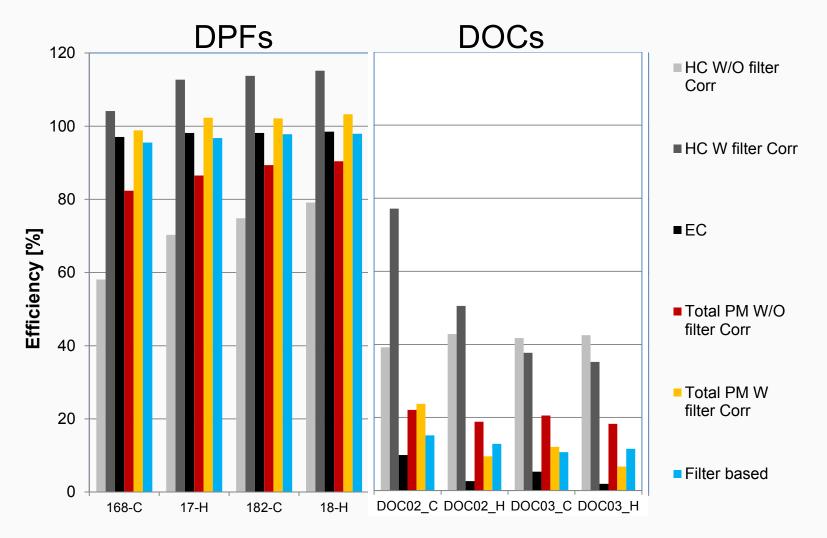
SCHOOL BUS	Level of Emissions Reduction						
INTERNAL AND	Devices	НС	СО	NO _x	PM	CO ₂	Drive Cycle
	DPF6C	90%	98%	6%	95%	1%	HHDDT
		95%	99%	6%	98%	1%	CSC
	DPF7C	91%	97%	-5%	94%	-1%	HHDDT
		85%	92%	3%	98%	-1%	CSC

15

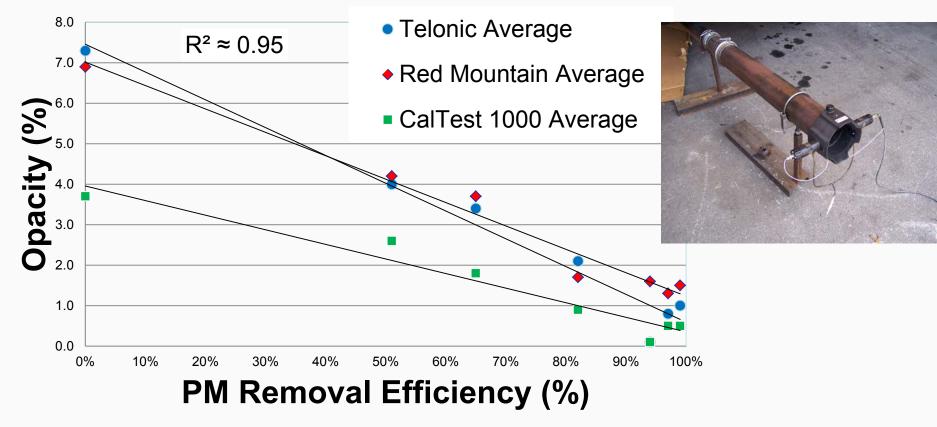

EPA Tested Levels of Reduction: DPFs

DPF Name	Label	Date Tested	PM In-Use	PM Verified
DPF1	DPF	2007-2008	95%	90%
DPF2A	Bus 940	Nov 2008	64%	85%
DPF3A	Bus 941	Nov 2008	65%	85%
DPF4B	Bus 124	Nov 2008	51%	60%
DPF5B	Bus 134	Nov 2008	82%	60%
DPF6C	Bus 2037	July 2012	97%	90%
DPF7C	Bus 2010	July 2012	98%	90%
DPF8A	Bus 48	July 2012	97%	85%
DPF9A	Bus 46	July 2012	99%	85%

Notes: All devices met the 75% threshold necessary to demonstrate a passing in-use device DPFs that share the same letter at end of name share the same make/model


Particle Number Reduction

*Each line represents one device.



EC-OC Reduction Efficiency

Smoke Opacity Results

- Absolute opacity values depend on type of meter

Summary and Conclusions

- Evaluation of in-use DPFs shows levels of reduction within inuse testing objectives
 - Most recent DPF testing showed PM emission reductions > 90%
 - Reduce elemental/black carbon by ~99%
 - DPFs have proven durable in retrofit applications
- DOCs reduce PAHs and other toxic air contaminants
 Cost effective retrofits for applications not suitable for DPFs
- Opacity testing needs further investigation but has the potential for use as a screening tool for DPF performance
- Test methods used for verification are appropriate for determining retrofit efficiency

Acknowledgements

- Montgomery County School District
 - Todd Watkins, Michael Vernon, Larry Riner
- Dripping Springs Independent School District
 - Pam Swanks, Bryce Sheppard
- Engine Control Systems
 - Kevin Brown, Campbell McConnell
- Donaldson Company, Inc.
 - Julian Imes, Todd Taubert
- California Air Resources Board
 - John Karim, George Gatt

Thank you

geller.michael@epa.gov