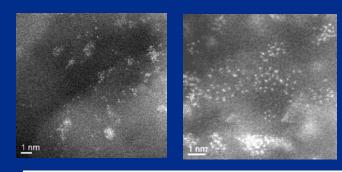
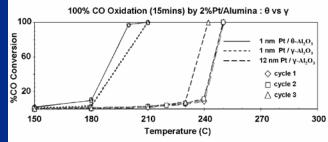
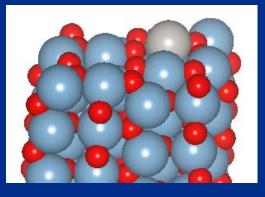

Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst

C.K. Narula, M. Moses-DeBusk, X. Chen, M.G. Stocks, X. Yang, L.F. Allard Physical Chemistry of Materials, Materials Science and Technology Division


Poster Location: P-8


August 27, 2010



Managed by UT-Battelle for the Department of Energy

Catalyst by Design - Theoretical, Nanostructural, and Experimental Studies of Emission Treatment Catalyst

- Pt/θ - Al_2O_3 is a better model for Pt- γ - Al_2O_3 that Pt/α - Al_2O_3
- Nanostructure for both
 - Single Pt atoms
 - 10-20 atom agglomerates with no Pt-Pt bond
- CO oxidation for both
 - Starts and complete at identical temperatures
- DFT studies on Pt/ θ -Al₂O₃ suggest that Pt is in zero oxidation state
 - Alternate CO oxidation mechanisms possible
- The energetics of Pt-Pd clusters suggest that Pd does not stabilize Pt against coarsening when particles are in sub-nanometer range

OAK RIDGE NATIONAL LABORATORY U. S. DEPARTMENT OF ENERGY

