ACC932 Materials and Processes Technology Development

# **Carbon Fiber SMC**

### Charles Knakal C. S. Wang USCAR General Motors

### 5-20-09 Project ID: Im\_07\_kia





| <ul> <li>Timeline</li> <li>Start – May, 2007</li> <li>Finish – Dec, 2010</li> <li>25 % Complete</li> </ul>                                                          | <ul> <li>Barriers</li> <li>Poor carbon fiber interface with automotive grade resin systems</li> <li>Poor mold flow</li> <li>Inconsistent material properties</li> <li>High costs</li> </ul>                                                     |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Budget<br>• Total –<br>• DOE: \$310,000 (including capital)<br>• Contractors: \$60,000<br>• \$75,000 (plus \$110,000 ACC capital)<br>in 2008<br>• \$54,000 for 2009 | <ul> <li>Partners</li> <li>Continental Structural Plastic (CSP),<br/>a Tier One supplier <ul> <li>Discounted compounding and molding</li> </ul> </li> <li>Zoltek, a carbon fiber manufacturer <ul> <li>Discounted fibers</li> </ul> </li> </ul> |





- To develop a carbon fiber reinforced SMC with physical properties and processing significantly superior to current carbon fiber SMC materials, in order to expand its application for automotive light-weighting.
  - > 200 MPa Tensile Stress
  - > 40 GPa Tensile Modulus
  - > 0.5% Tensile Strain to failure
  - < 10% COV</p>
- To focus on lower cost carbon fibers and commercial viability.





- Work directly with a Tier One automotive SMC compounder/molder to develop an improved low cost carbon fiber SMC. Utilize the supplier's familiarity with existing material systems to rapidly implement the new technology.
- Investigate methods to improve carbon fiber distribution and fiber to resin matrix adhesion.
  - Fiber resin wet-out and adhesion
  - Molding consistency
- Develop structural SMC first, follow by Class-A material.



### Milestones

- Secure Tier One supplier
- Modify SMC compounder
  - Funding
  - Modification
- Determine material goals
- Compound baseline material
- Develop improved material
- Mold demonstration automotive part



### **SMC Compounder at CSP**





### **Carbon Fiber Chopper**



### Technical Accomplishments – FY2008

- Existing glass fiber SMC compounder was successfully modified to chop carbon fibers. This includes safety features for dealing with air born carbon fibers.
- Completed testing of currently available carbon fiber SMC materials, used to set project targets for an improved material.
- Conducted fiber "sizing" study of Panex 35 carbon fibers, determined best initial sizing and amount of sizing to use with automotive vinyl ester resin systems.



## **Future Work**

- Compound and test baseline SMC material.
- Compound and test smaller tow carbon fibers to evaluate fiber distribution and wet out.
- Investigate methods to improve distribution and wet-out of low cost/large tow carbon fibers.
- Evaluate flow-ability of materials.
- Modify successful structural materials for improved surface appearance.
- Investigate/compound current "fast" epoxy SMC resin systems for comparison.



### Summary

- Program targets were set to provide a commercially viable carbon fiber SMC material.
- CSP was selected as the Tier One supplier and their existing SMC compounder was upgraded to handle chopping of carbon fibers.
- An initial fiber sizing study was completed at Zoltek (the low cost carbon fiber supplier).



ACC932 Materials and Processes Technology Development

## **Bond-Line Read-Through**

### Kedzie Fernholz

Ford

5-20-09



This presentation does not contain any proprietary, confidential, or otherwise restricted information.

LM07

# ACC Bond-Line Read-Through Project Overview

#### Timeline

- Project Start: 3Q05
- Project End: 3Q10
- Percent Complete: 60%

#### Budget

- Total project funding
  - DOE \$600k
  - Contractor \$45k
- FY08 Funding: \$110K
- FY09 Funding: \$110K



#### Barriers Addressed

- Robust Joining Technologies for Composites
- Barriers to Implementation of Class "A" Carbon Composites
- Affordable Carbon Composites
- Partners
  - Visuol Technologies
  - Meridian Automotive Systems (Experimental)
  - Multimatic Engineering Services (Analytical)

# ACC Bond-Line Read-Through Project Objectives

#### **Project Objective**

Develop the ability to predict bond-line read-through in the design phase to enable use of minimum thickness closure panels

#### FY08 Project Objectives

- Phase 1 Measurement Development
  - Evaluate and Refine Algorithm Converting Raw Data to Meaningful Quantitative Value

#### Phase 2 – Determine BLRT Root Cause

- FY08 Experiments
  - Initial Factor Screening Experiments
  - Effect of Cure Temperature Experiment
  - Effect of Adhesive Volume Experiments
  - Flange Coverage Experiment



### ACC Bond-Line Read-Through Project FY08 Milestones

#### Phase 1 – Measurement Development

- Demonstrate the developed measurement algorithm is applicable to experimental panels
- Determine repeatability and reproducibility of the measurements.

#### Phase 2 – Determine BLRT Root Cause

- Identify factors with a high impact on BLRT severity
- Identify at least two factors with a minimal impact on BLRT severity



# ACC Bond-Line Read-Through Project

#### Phase 1 – Measurement Development

 Develop a measurement technique that quantifies the visual severity of surface distortions caused by bond-line read-through in a way that correlates with visual assessments

#### Phase 2 – Determine BLRT Root Cause

MOTIVE COMPOSITES CONSORTIUM

- Experimentally determine which material and process factors are the primary contributors to BLRT-induced distortions
- Create experimental data to validate analytical models
- Phase 3 Develop an Analytical Model for Predicting BLRT
  - Determine the material properties and analytical modeling techniques necessary to predict BLRT-induced distortions
  - Identify design principles to minimize the occurrence of BLRT

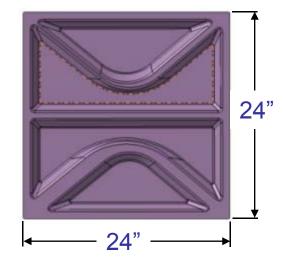
and allow OEMs to use minimum thickness outer panels in closures

### ACC Bond-Line Read-Through Project FY08 Technical Accomplishments

#### Phase 1

- Algorithm demonstrated to successfully quantify BLRT distortions on experimental assemblies
- Repeatability & reproducibility of overall system found to be inadequate
  - Assemblies are measured three times to improve data
  - Evaluation of a more "production representative" system to occur in FY09

#### Phase 2


- Completed initial screening experiment, including analysis
- Completed initial follow-up experiments, including analysis
  - Effect of Cure Temperature Experiment
  - Effect of Adhesive Volume Experiments
  - Flange Coverage Experiment



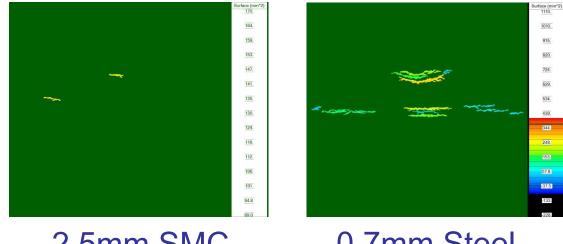
## Phase 2: Experimental Analysis Bond-line Read-through Samples


#### Sample Geometry

- 24"x24" flat panel "outer panel"
- "Inner panel" tool with 4 flange widths
- Manufacturing Process
  - Electrically heated bond nest
  - Bond thickness controlled by bonding press
  - Robotic application of adhesive










All experiments are being conducted at Meridian AUTOMOTIVE COMPOSITES CONSORTIU Automotive's Shelbyville & Rushville, IN Plants

# Phase 2: Experimental Analysis Screening Experiment Results

#### Stiffness (Modulus) of Outer Panel



Bending (structural) stiffness is more important than Young's modulus!

2.5mm SMC

AUTOMOTIVE COMPOSITES CONSORTIU

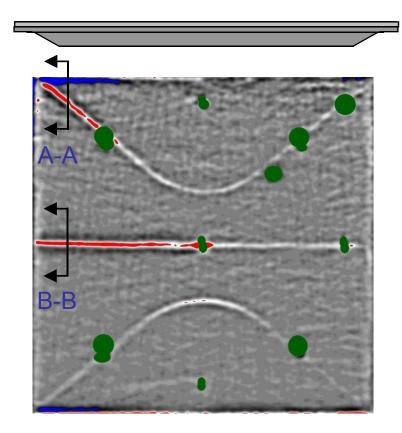

0.7mm Steel

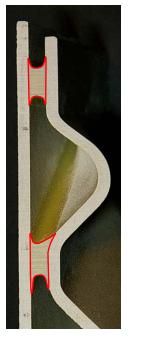
The deflection of a plate is a function of the thickness cubed!  $U_{\text{plate}} = \frac{E t^{3}}{24 (1 - y^{2})} \left\{ \begin{cases} \delta^{2} u_{y} \\ \delta u_{x}^{2} \end{cases} + \frac{\delta^{2} u_{y}}{\delta u_{z}^{2}} \end{cases} dx dz \right\}$ 

# Phase 2: Experimental Analysis Screening Experiment Results

#### Type of bond nest had no effect

 This may be due simply to the large percentage of the panel that is heated






"Skeletal" Nest

# Phase 2: Experimental Analysis Screening Experiment Results







Section A-A

#### Section B-B

Note: Section lines on curvature map are approximate locations



# Phase 2: Experimental Analysis Drop Size Evaluation

- Adhesives
  - Ероху
  - Urethane
- Drop Sizes
  - Robotic Application Volume
  - 1/2 Robotic Application Volume


Hand Dispensed Using a Syrin

¼ Robotic Application Volume



# Phase 2: Experimental Analysis Drop Size Evaluation

### **Urethane**



Making the drops smaller eliminated BLRT.

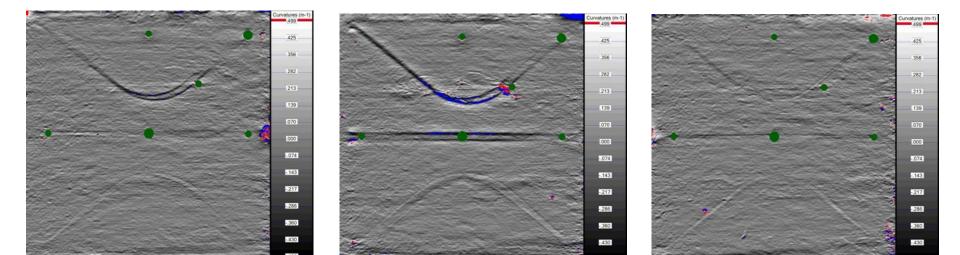


# Phase 2: Experimental Analysis Drop Size Evaluation

68






Robotic Dispense

302

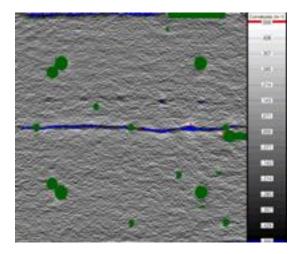
1/2 Robotic Dispense 1/4 Robotic Dispense

Making the drops smaller reduced BLRT. Is this due to volume or squeeze-out?

## Squeeze-out vs. Adhesive Volume



"Standard Dispense" 1mm nominal bond gap "2X Dispense" 1mm nominal bond gap "2X Dispense" 3mm nominal bond gap


#### Squeeze-out

appears to be more of a concern than the volume of adhesive.



### Phase 2: Experimental Analysis Freestanding Outers – Epoxy

- Apply Adhesive to an Outer Panel
  - **Bead Across the Center**
  - Large Drops Hand Dispensed Using a Syringe
- Cured in the fixture (300°F) until dry





Adhesive causes more distortion on a freestanding outer panel than on an assembly!

# ACC Bond-Line Read-Through Project **Future Work**

- Evaluate Variations on Measurement System Hardware to Improve Repeatability & Reproducibility
- Complete Additional Experiments
  - Mastic screening
  - Panel density and inner panel thickness
  - Generate experimental data to validate CAE model development
- Begin Development of Analytical Models
  - Develop a validated model for BLRT on a freestanding outer
  - Develop a validated model for BLRT on a "Basic" Assembly
  - Develop a validated model for BLRT caused by Stand-offs on the inner panel bond flange
  - Use the model to explore the effectiveness of different design strategies



# ACC Bond-Line Read-Through Project Summary

- Surface distortions caused by BLRT can now be quantitatively measured
- Experimental data generated in this project has identified several key material and process factors for which analytical models must account
- The ability to predict BLRT will allow OEMs to immediately reduce closure outer panel thickness (and therefore WEIGHT) by 25%.
- This technology will allow the use of minimum thickness panels when Class "A" carbon fiber SMC becomes technically and financially viable.

