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What is Diesel Particulate Matter ?


• Composition:

–“Dry carbon”


• turbostratic graphite 
• initial evidence of fulleren 

structures in some cases 
–Adsorbed HCs

–Inorganic materials


• Lube oil ash, H2SO4, HNO3, H2O 

• Nanostructure 
- Amorphous, fullerenic, graphitic 

• Morphology: 
–Primary particles: ~20-40 nm 
–Agglomerates: 0.1-1 micron 

DieselNet 

Dieselnet.com 



Reactivity evolution over a life cycle of a soot particle


Printex 

A: High reactivity due to
ambient aging
B: Steady-state oxidation
C: Steep increase 

Diesel Soot 

A: High reactivity due to: 
– Adsorbed HC; ambient aging 
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B: “Steady-state” oxidation 
C: Increased reactivity at later stages of oxidation


r = A · exp(-Ea/RT) · [C]a · [O2] b · [H2O]c




Progressive oxidation 

Reactivity is increasing with degree of oxidation: 
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Increasing
Oxidation 

– No measurable changes of Ea, or reaction order in O2
* Reaction 	chemistry appears to be independent of the degree of


carbon oxidation.

* Number (density) of reactive sites (A) appears to be near constant!




Specific Surface Area*
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–BET surface area measured in-situ at different stages of oxidation

–samples pre-treated by thermal desorption


* Development of the reactivity does not appear to correlate directly with the
specific surface area 

* Need a different parameter which would correlate with the number of active 
sites *Courtesy: Dr. Do Heui Kim, (PNNL) 



Puzzles (thus far): 

* Comparative changes in reactivity 

* Comparative evolution of surface areas 

Advantages of electron microscopy (HRTEM) 

* Direct observation without property assumptions 

* Potential to reveal changes in nanostructure (during oxidation)


* Correlate oxidation characteristics (rate) with nanostructure 

………What changes in nanostructure? 



Nanostructure and Implications: Reactivity
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Soot Burnout Rates
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ENG-A - Original from Trap




ENG-A - Post partial Oxidation (TGA, 50%)




-15 degree tilt 

No tilt ENG-A 75% 
Burnout 

Hollow particles

viewed though

Successive tilts


+15 degree tilt 



Eng-A: Oxidized at 450 °C 

Eng-A: As-

received


“Solid particles” “Hollow particles” 

PNNL 



Printex - as supplied 



Printex - Post Partial Oxidation

50% Burnout, via TGA




Summary of Results


Sample 

designation 

Ash contents, 

wt % 

SOF contents, 

wt% 

Observations 

ENG(A) 6.5 ± 0.5% 9 ± 1% No shells/capsules 

Printex-U™ <0.5% 4 ± 1% No shells 

 

Does Internal burning correlate with either ash or soluble organic

fraction (SOF) content??




A Carbon Black




Statistical Properties Extracted From

HRTEM Images (of soot nanostructure)


A T = L/A 

* Other inputs 
–Maximum join distance 
–Minimum fringe length 

PositionPosition

LengthLength

FringeFringe
SeparationSeparation

OrientationOrientation

TortuosityTortuosity

FringeFringe
DensityDensity

Fringe Length (nm) 

Tortuosity 



Interpretation(s) 

A. Densification - a pseudonym for graphitization 

1. Thermally induced densification
Creation of radicals by thermal evolution of volatiles or loss of 
H-atoms permits lamella growth 

2. Oxidation 
Creation of radical sites by oxidative removal of amorphous
carbon or loss of H-atoms 

B. Internal Burning - disordered carbon and/or trapped volatiles 
preferentially burnout 

Trap conditions could promote both densification and/or volatile

evolution.




Phenols

XPS-Characterization of Carbon Nanostructure


C-C sp2 

Carbonyls
Carboxylic 

C-C sp3 



Conclusions 
* Burning mode dependent upon nanostructure and oxidation conditions


(ash and SOF are not unique predictors)

* Diesel soot and Printex U exhibit nearly identical activation energies

and burning rates and even similar active site numbers BUT 
vastly different surface area evolution! 
* Measures other than surface area are needed for modeling


burning mode and rate.

(A key feature will link the distribution of active sites to the


nanostructure)

* Convolved with initial nanostructure are the change(s) enabled by

oxidation. 

Implications:
* Latter stage burnout will strongly depend upon burnout mode
* Soot burning mode(s) could affect regeneration efficiency and models.

* DPF regeneration costs fuel and each cycle limits lifetime.

Costs money! 
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