Boosted HCCI for High Power without Engine Knock, and with Ultra-Low NO_X Emissions using a Conventional Fuel

John Dec and Yi Yang

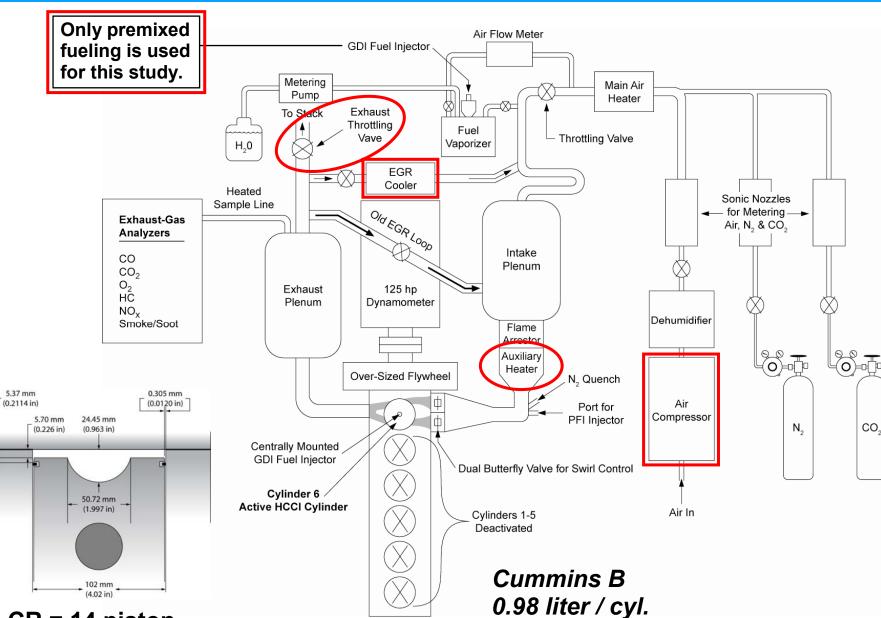
Sandia National Laboratories

15th Directions in Engine-Efficiency & Emissions Research Conference August 3 – 6, 2009, Dearborn, MI

> <u>Sponsor:</u> U.S. DOE, Office of FreedomCAR & Vehicle Technologies Program Manager: Gurpreet Singh

Introduction

- Advanced engines using HCCI or HCCI-like combustion can provide both high efficiencies and very low emissions of NO_X and PM.
- Limited max. power is a significant limitation to implementation of HCCI.
- Intake boosting is well-known as a method for increasing power.
 - Application to HCCI challenging because increased P_{in} enhances autoignition \Rightarrow combustion becomes overly advanced \Rightarrow knock.
 - Reduced CR and/or special fuels (natural gas, ethanol) often required.
- Previous work on boosted HCCI.
 - 1. Christensen & Johansson \Rightarrow 16 bar IMEP using natural gas.
 - 2. Olsson *et al.* \Rightarrow 16 bar BMEP using ethanol and *n*-heptane.
 - 3. Bessonette *et al.* \Rightarrow 16 bar BMEP using low ON gasoline & low CN diesel, CR = 12.
 - 4. Kalghatgi *et al.* \Rightarrow 16 bar IMEP using gasoline in a DI diesel, but NO_X = 0.58 g/kWh, well above US 2010 limits.


IMEP or BMEP ~ 16 bar, but used special fuels or other changes.

Objective and Approach

- Desirable to use a <u>conventional fuel</u> and to keep <u>NO_X below US 2010</u> limits without aftertreatment.
 - Maintain a relatively high CR for high efficiency/low fuel consumption.
- <u>**Objective</u>**: Determine the potential boosted HCCI using conventional gasoline \Rightarrow with no engine knock and NO_X < US2010.</u>
- Approach:
 - 1. Conventional Gasoline: (R+M)/2 = 87, RON = 90.8, MON = 83.2. Aromatics 23%, Olefins 4.2%, Alkanes 73%
 - 2. Piston: CR =14, open combustion chamber.
 - 3. Current data at 1200 rpm.
 - 4. Control pressure-induced enhancement of autoignition with a combination of:
 - \Rightarrow Intake temperature control
 - \Rightarrow Cooled EGR
 - 5. Maintain $P_{exhaust} \approx P_{in}$ + 2 kPa. (P_{in} = intake pressure)

HCCI Engine and Subsystems

CR = 14 piston

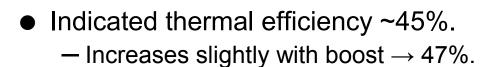
Test Procedure

- Systematically increase P_{in} and determine maximum attainable IMEP_g.
 - Overly advanced combustion can cause knock and reduced efficiency.
 - Control pressure-induced enhancement of autoignition using a combination of T_{in} adjustment and cooled EGR.
- Retard combustion to prevent knock \Rightarrow eventually reach stability limit.
- For each P_{in}, load is limited by knock/stability limit.

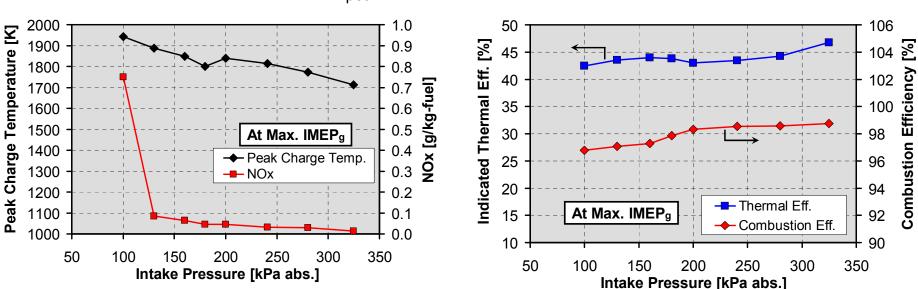
• Knock-limit criterion: Ringing
$$\leq 5 \text{ MW/m}^2 = \frac{1}{2\gamma} \cdot \frac{\left(0.05 \cdot \frac{dP}{dt, \max}\right)^2}{P_{\max}} \cdot \sqrt{\gamma R T_{\max}}$$

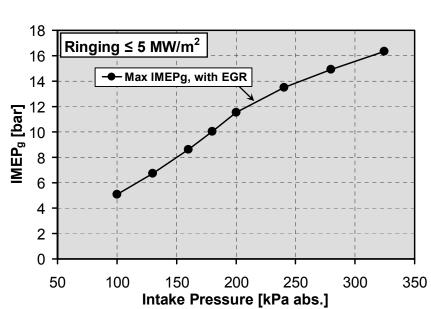
Jim Eng, SAE 2002-01-2859

- Corresponds to 8 bar/°CA at 1200 rpm, $P_{in} = 100$ kPa absolute.
- Increase in P_{max} helps \Rightarrow dP/d θ > 8 bar/°CA is OK with boost.



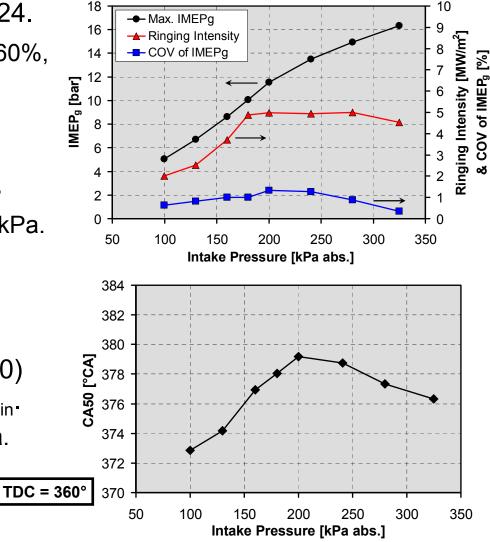
High-Load Limits with Boost




- Naturally aspirated, requires $T_{in} \approx 130^{\circ}C$ (or hot residuals).
- Reduce T_{in} with boost to maintain sufficient combustion retard.
 - − For $P_{in} > 160 \text{ kPa}$, $T_{in} \rightarrow T_{amb}$ ⇒ limits allowable fueling.
 - Max. IMEP_g = 8.8 bar at P_{in} = 180 kPa.
- Cooled EGR to further slow autoig.
- 18 Ringing \leq 5 MW/m² 16 - Max IMEPg, with EGR 14 **IMEP**³ [bar] 6 4 - Max IMEPg, no EGR 2 0 50 100 150 200 250 300 350 Intake Pressure [kPa abs.]
- Maintain T_{in} = 60°C ⇒ allows substantial timing retard w/o significant LTHR.
 Allows a large increase in fueling ⇒ Max. IMEP_g increased to 16.3 bar at 324 kPa.
- For P_{in} ≥ 260 kPa, EGR levels are so high that the mixture is stoichiometric.
 Mass-fraction of reactants must be reduced as P_{in} is increased above 260 kPa.
- Therefore, higher loads require proportionally more boost.
 - Currently limited by max. allowable cylinder press.~170 bar.
 - 100-cycle avg. peak pressure at max.-load point is 150 bar.

Performance at Maximum IMEP_g **Points**

- Combustion eff. increases, $97 \rightarrow 99\%$.
 - Higher wall temps. \Rightarrow improve combst.
 - Increased EGR reduces HC & CO emiss.
- NOx emissions extremely low for all boosted cases, < 0.1 g/kg-fuel.
- Correlates with low peak charge temp.
 NOx higher for P_{in} = 100, T_{peak} > 1900K.

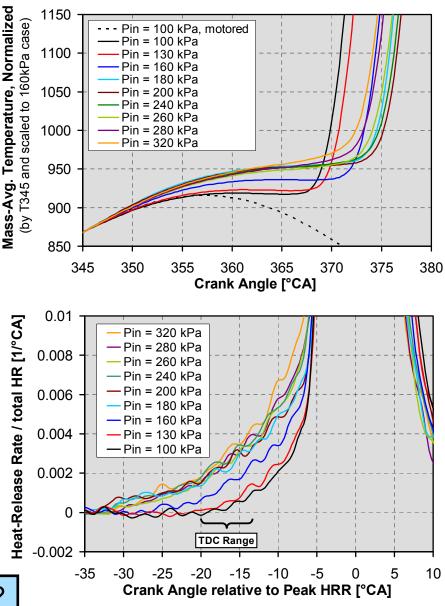


Maximum IMEP_g **Point – Stability and Knock**

- Achieved $IMEP_g = 16.3 \text{ bar}, P_{in} = 324.$
 - Stoichiometric C/F = 38.5, EGR = 60%, $T_{exhaust}$ = 407°C.
- COV of $IMEP_g \le 1\%$, VG stability.
- Ringing \leq 5 MW/m², No Knocking.
 - Ringing increases $P_{in} = 100 180$ kPa.
 - — P_{in} ≥ 180 kPa, Ringing held at 5 by substantially retarding combustion timing.
- Allowable combustion retard (CA50) increases greatly with increased P_{in}.

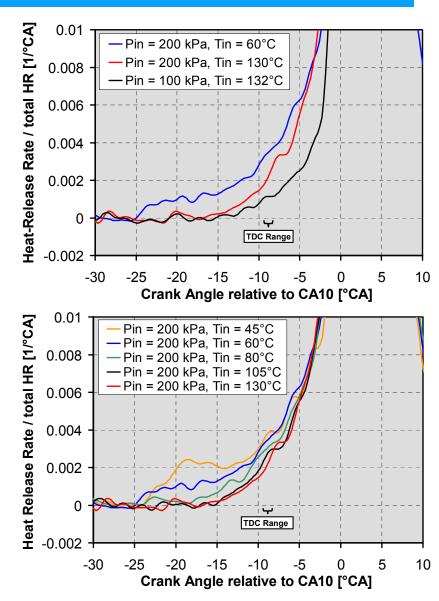
- Less retard required, $P_{in} > 200$ kPa.

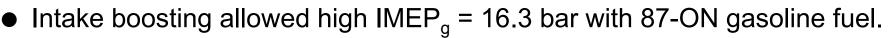
• Substantial timing retard with good stability is the key to controlling knock.


Retarding Combustion for Boosted Operation

- Retard combst. to reduce max. PRR.
 Sjöberg *et al.*, <u>SAE 2005-01-0113</u>.
- Stability depends on dT/dθ prior to onset of main combustion.
 Sjöberg & Dec, <u>P. Comb. Inst. 2006</u>.
- dT/dθ increases with intake boost.
 Allows more retard with good stability.
- Compare HRR curves ⇒ align by peak HRR & normalize by total HR.
- Shows that the cause is increased ITHR (intermediate-temperature heat release) at higher boost.
 - Increases greatly P_{in} = 100 180 kPa, > T_{in} is reduced from 130 \rightarrow 60°C.

- Little change for $P_{in} > 180$, $T_{in} = 60^{\circ}C$.


• Is increased ITHR due to $\uparrow P_{in}$ or $\downarrow T_{in}$?



P_{in} and **T**_{in} Effects on ITHR with Boost

- T_{in} fixed at 130°C ⇒ Increase P_{in} from 100 → 200 kPa, ITHR ↑ significantly.
 Mainly late ITHR ⇒ most important.
- Reduce $T_{in} 130 \rightarrow 60^{\circ}C \Rightarrow more ITHR$.
 - Mainly early ITHR; and onset of LTHR.
 - Further decr. T_{in} to 45°C, more LTHR.
 - Less important for stability.
- Temp. reduction contributes to the increase in ITHR.
- Pressure-induced increase in the ITHR is the more important effect.

- No ringing, very good stability, high efficiency, and ultra-low NO_{χ} .
- Higher IMEP_g should be possible with greater boost \Rightarrow max. cyl. press?
- The key to this success was the ability to substantially retard combustion. \Rightarrow CA50 to 379°CA (19°aTDC) with good stability.
 - This is possible because the ITHR increases significantly with boost \Rightarrow keeps bulk-gas temperatures rising despite late CA50.
 - Detailed investigation showed that enhancement of ITHR by increased P_{in} is most important, but the enhancement by the reduction of T_{in} also contributes.
- For all data, $P_{exhaust} \approx P_{in} + 2 \text{ kPa}$
 - Also tested $P_{exhaust}$ = 250 for P_{in} = 200 kPa \Rightarrow little effect on performance.
 - For max. IMEP_g points, $T_{exhaust}$ = 407 470 K \Rightarrow OK for turbo-charger.
- Study suggests that boosting has good potential as a viable approach for extending the load of gasoline-fueled HCCI.
- Future studies are planned to investigate boosted HCCI over a wider range of operating conditions.