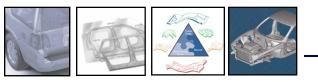


Auto/Steel

Partnership

Auto/Steel Partnership:


Hydroforming Materials and Lubricant Lightweight Rear Chassis Structures Future Generation Passenger Compartment

> Dr. Roger A. Heimbuch Auto/Steel Partnership

Project ID: lm_27_heimbuch

www.a-sp.org

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Hydroform Materials and Lubricants

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Timeline

- Start 10/2001
- End 09/2009
- 95% Complete

Budget

- Total Project Funding
 - DOE \$941K
 - Cost Share \$728K
- Funding for FY08
 DOE \$31K
- Funding for FY09
 DOE \$0K

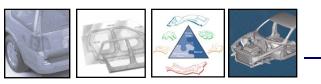
Partners

Barriers

٠

CAE Tools

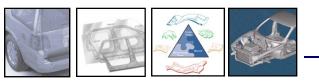
Material properties


Process knowledge

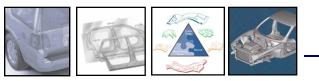
- CANMET
- University of Waterloo

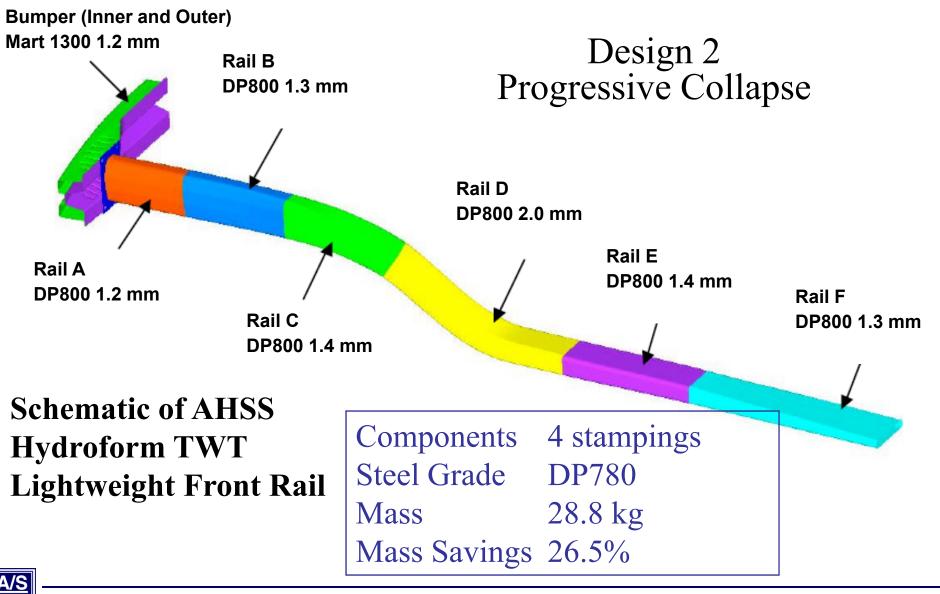
Fabrication of AHSS tubes

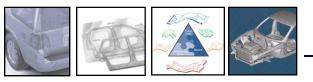
- IRDI
- Schuler Inc
- Soudronic



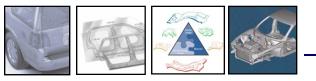
HYDROFORMING MATERIALS AND LUBRICANTS PROJECT GOALS


- Explore design, manufacturing and material implications/limitations of tubular hydroforming using Advanced High-Strength Steel (AHSS).
- Develop in-depth understanding of critical issues pertaining to fabrication of tubes from AHSS.
- Improve advanced CAE tools to streamline hydroforming process design.
- Facilitate the adoption of cutting-edge hydroforming applications in vehicle structures.

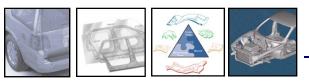




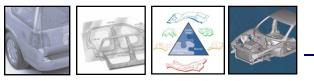
- Investigate fabrication of DP and TRIP Steel Tube on an ERW and Laser Production Lines
 - ERW work nearly complete
 - Laser contract canceled-lack of funding
- Fabricate AHSS Hydroform TWT Lightweight Front Rails



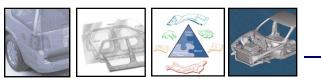
AHSS Hydroform TWT lightweight front rail Initial unsuccessful rotary draw tube bending attempts at Erin Industries.

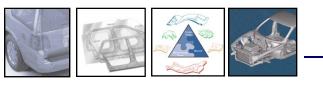


AHSS hydroform TWT lightweight front rail Bent tube preform at Erin Industries.

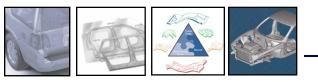


AHSS hydroform TWT lightweight front rail dies at Schuler Hydroform.



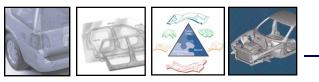


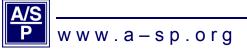
AHSS hydroform TWT lightweight front rail Tube collapse during hydroforming at Schuler Hydroform.



- "Influence of Bending Parameters on the Hydroforming of IF and DP600 Tubes with Welded Ends Caps."
 - Tech transfer CD.
- "Investigation of Fabricating Dual Phase and TRIP Steel Tube from an ERW Production Line."
 - Tech transfer CD.
- "Comparing Laser Welded DP and TRIP Steels with ERW Tubes of Same Materials."
 - Tech transfer CD.
- "Fabricate AHSS Hydroform TWT Lightweight Front Rail."
 - Tech transfer CD and road show with hardware display to be prepared.
- Great Designs in Steel 2009.
- 2009 SAE World Congress technical paper and presentation.
 - Draft manuscript submitted.

- Improved understanding of failure criteria for hydroforming.
- Improved understanding of test and evaluation methods for tubes.
- Improved understanding of effect of tribological and bending effects in hydroforming.
- Improved understanding of tube seam welding of AHSS tubes.
- Improved understanding of issues involved in fabicating and hydroforming AHSS TWT tubes.




Lightweight Rear Chassis Structures

This presentation does not contain any proprietary, confidential, or otherwise restricted information

- Develop mass efficient solutions for passenger car chassis structures using AHSS.
- Demonstrate successful use of AHSS in chassis structures.
- Address corrosion issues associated with reduced thickness AHSS.
- Reduce chassis mass by at least 25 percent with no more than a 9 percent cost premium.
- Technology transfer of project results.

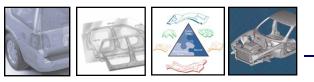
Phase I – Material Substitution:

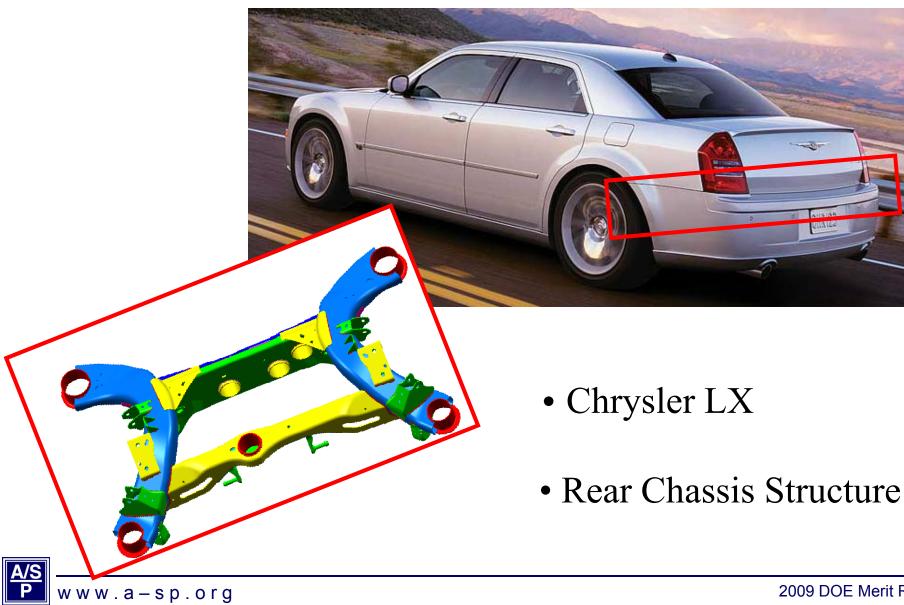
- Design
- Prototype Build
- Performance Testing
- Gap Analysis
- Final Report
 2008

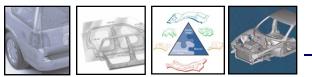
Completed Completed Completed Completion: June 2008 Completion: June

Phase II – Clean Sheet Re-Design:

- Design
- Virtual Testing

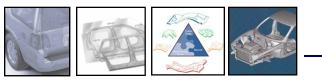

Completed Completed


• Final Report Completion: June 2008

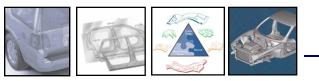

Phase III – Technology Transfer June – Sept. 2009

- Road Shows
- Technical Presentations

PROJECT APPROACH

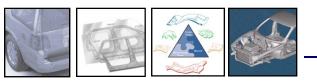


27% Mass Reduction – Through Clean Sheet Re-Design (No Loss of Stiffness)

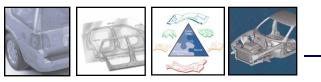

📕 w w w . a - s p . o r g

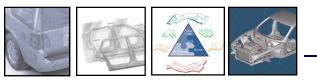
Lightweighting features:

- Advanced High-Strength Steel
- Laser Welded Blanks
- New Architecture
- Extensive optimization and redesign

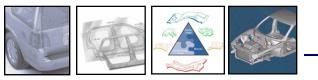


- Baseline steel grades ranged from: 240 345 MPa.
- New grades for Phase II are DP590, DP780, TRIP 780.



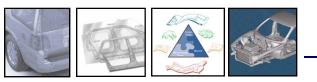


- Through virtual testing, determined that the durability of the Final Design is as good as or better than the baseline.
- Completed corrosion testing.



- Analyze corrosion test results.
- Prepare Phase I Final Report.
- Complete cost analysis for Phase II Final Design.
- Prepare Phase II Final Report.
- Transfer technology.

- Final Reports for Phases I and II will be posted in the public domain on <u>www.a-sp.org</u>.
- Five technology transfer road shows will be given to Chrysler, Ford, General Motors and Tier 1 chassis structure suppliers.
- Technical presentations will be given at GDIS 2009.



Future Generation Passenger Compartment

This presentation does not contain any proprietary, confidential, or otherwise restricted information

OVERVIEW

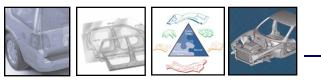
Timeline

- Start 06/2006
- End 06/2009
- 90% Complete

Budget

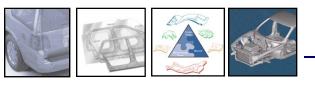
- Total Project Funding
 - DOE \$1,366K
 - Cost Share \$697K
- Funding for FY08

 DOE \$910K
- Funding for FY09
 DOE \$47K

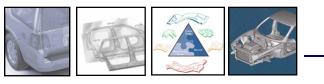

A/S www.a-sp.org

Barriers

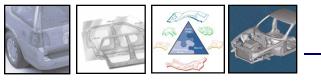
• Mass efficient design solutions


Partners

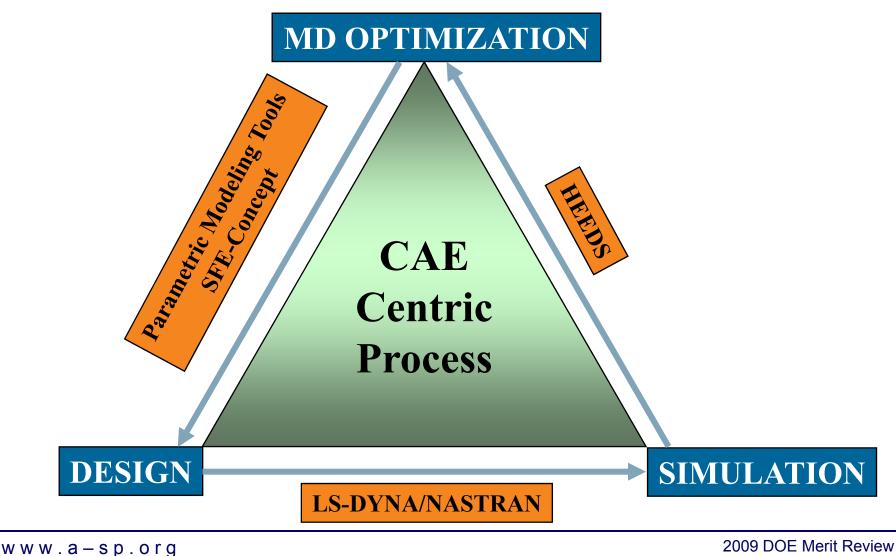
- ETA
- EDAG
- Caminoe
- University of Michigan
- Altair

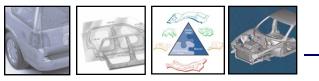

- Develop mass efficient design solutions and AHSS applications for the passenger compartment which enable energy savings via mass reduction of 20 to 25 percent and cost parity relative to current architecture/material applications while meeting the increased crash performance requirements of FMVSS and IIHS.
- Focus on side impact and roof strength requirements, but do not exclude front and rear impact load cases, global stiffness and durability performance.

- Perform study on a four-door, five-passenger, Body Frame Integral sedan, based on rear drive donor vehicle (i.e., the reference Multi-Material Vehicle).
- Apply Phase 1 Concept Development to Phase 2 Validation on the donated vehicle to study applicability to a current production design.
- Build validation properties and subject them to crash testing and correlate with model predictions. Build cancelled due to cost and timing constraints

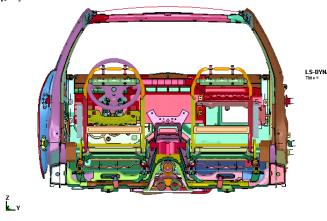


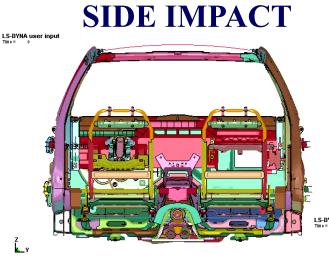
Deliverables	Timing
Confirmation and Target Setting – Complete	04/07
Design Optimization & Confirmation – Complete	12/07
Parts Consolidation – Complete	03/08
New Concept Design – Complete	04/08
Design Confirmation & Improvement – Complete	06/08
2 nd Optimization – Complete	08/08
Final Design Modification – Complete	08/08
Final Design Confirmation – Complete	10/08
Sensitivity Analysis	12/08
Final Report	02/09



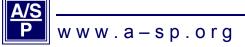


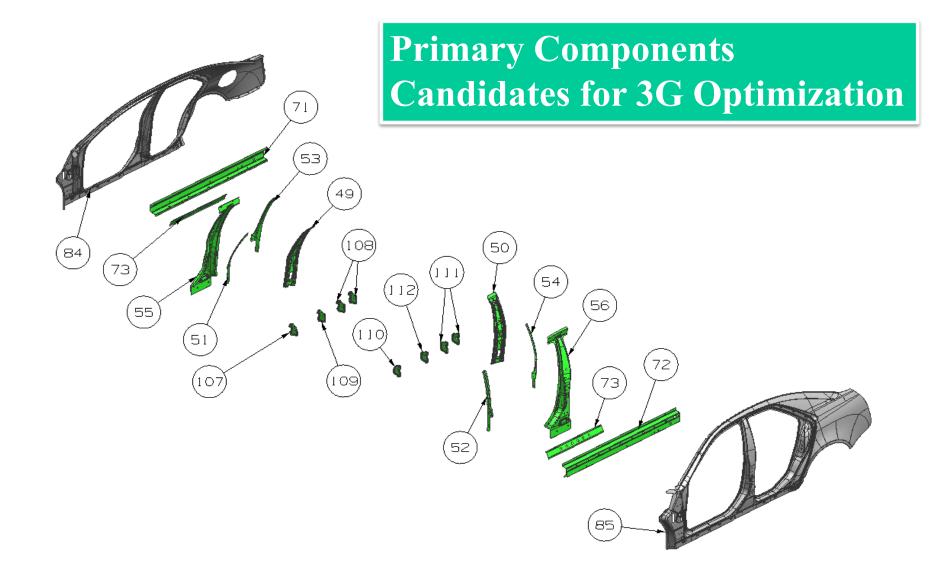
<u>A/S</u> P


CAE CENTRIC PRODUCT DEVELOPMENT

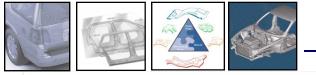


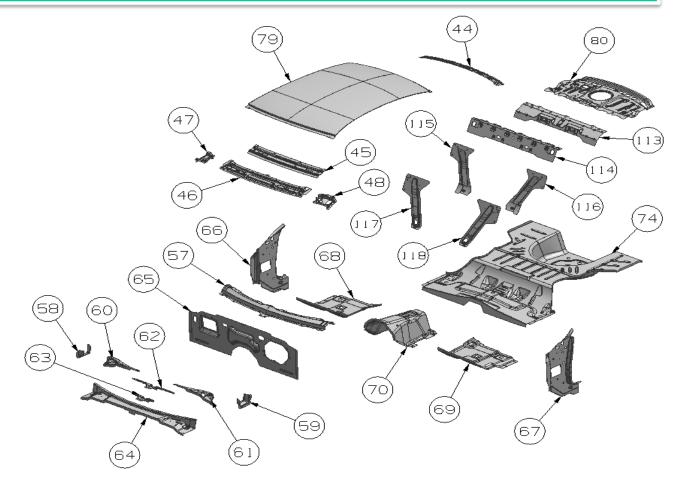
POLE IMPACT


LS-DYNA user input

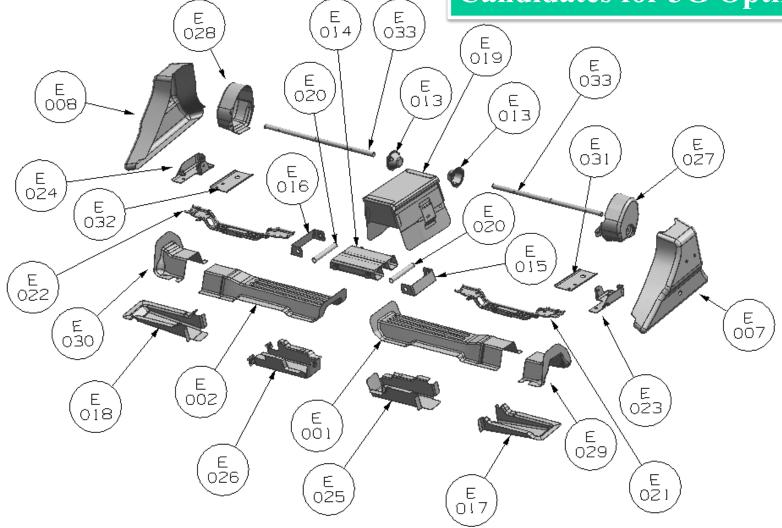


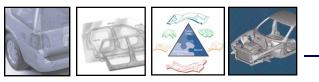
ROOF CRUSH



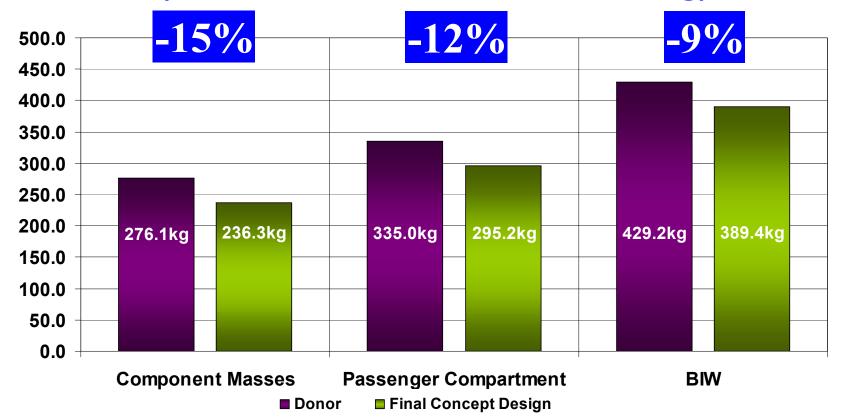


Secondary Components


Candidates for Grade & Gauge Optimization



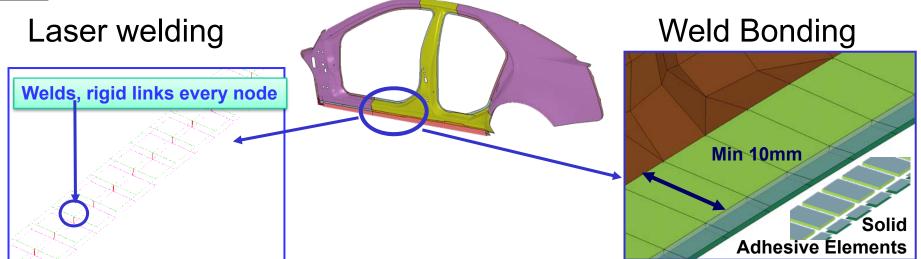
Candidates for 3G Optimization



AS

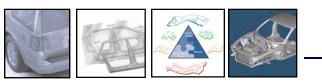
FINAL CONCEPT DESIGN RESULTS

(Mass reduction with doors -39.8kg)

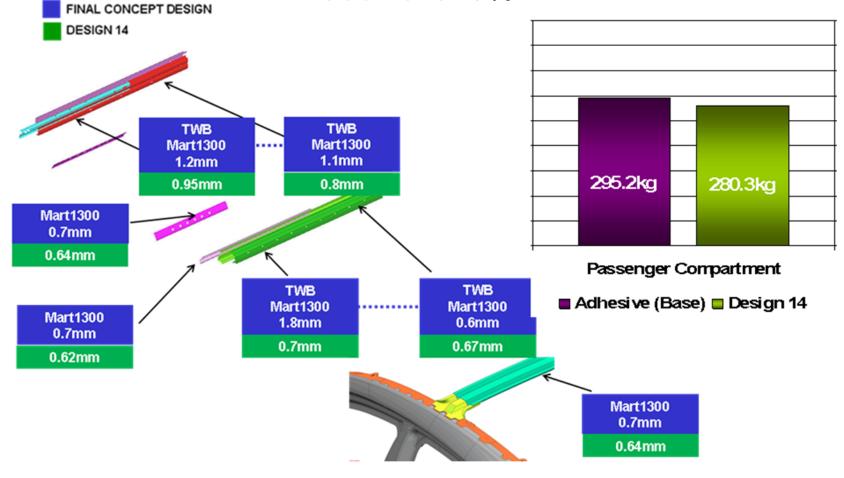


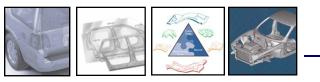
Mass (kg)

Www.a-sp.org



FGPC – MODIFIED BASELINE WITH CONTINUOUS JOINING OPTIONS:


	PERFORMANCE IMPROVEMENT	
	SPOT-WELD→LASER	SPOT-WELD→ADHESIVE
IIHS Side Impact	2%	16%
IIHS Front Impact ODB	16% to 44%	22% to 60%
Roof Crush	15%	25%
Bending	13%	19%
Torsion	14%	15%



RE-OPTIMIZATED GAGE TO BASELINE PERFORMACE FOR WELD BONDING


FGPC results 15% mass reduction. Continuous joining results in additional 5%.

- This project will be completed in Q2 FY2009
- Further work to be completed includes:
 - Fatigue sensitivity study
 - Cost modeling
 - Final Report
 - Technology transfer

- Mass reduction projects
 - Achieved 10 to 30% mass reduction
 - Used optimization techniques
 - Applied AHSS steels
- Roof strength project
 - Achieved 63% higher load carrying capacity
 - Minimal mass increase
 - Used optimization techniques
 - Applied AHSS steels with plastic inserts
- Further mass reduction can be achieved by applying mass compounding estimates to drive initial design criteria.