Automotive HCCI Engine Research

Richard Steeper Sandia National Laboratories

2010 DOE Vehicle Technologies Annual Merit Review Washington, DC June 8, 2010

> Program Manager: Gurpreet Singh DOE Office of Vehicle Technologies

Project ID: ACE006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

TRANSPORTATION ENERGY CENTER

Overview

Timeline

- Project provides fundamental research supporting DOE/industry advanced engine development projects.
- Project directions and continuation are evaluated annually.

Budget

- Project funded by DOE/VT
- FY09 funding: \$580k
- FY10 funding: \$620k

Barriers identified in VT Multi-Year Program Plan

- Inadequate fundamental knowledge of engine combustion:
 - Fuel injection, evaporation, and mixing;
 - Heat transfer and thermal stratification;
 - Ignition, low-temperature combustion, and emissions formation.
- Target goals for Advanced Combustion R&D (2015):
 - 25% Gasoline fuel economy improvement;
 - Achieve Tier II, Bin 2 emissions with < 1% thermal eff. penalty.

Partners

- Project lead: Richard Steeper; Post-doc: Russ Fitzgerald
- University/National Lab:
 - Lawrence Livermore National Lab and University of Wisconsin:
 - KIVA model of automotive HCCI optical engine.
 - Stanford University:
 - 5-year diagnostic development program (completed this year).
- Industry:
 - GM & Ford (extensive technical interactions);
 - 15 Industry partners in DOE's Advanced Engine Combustion Working Group.

Relevance: Objectives and Milestones

• Overall objective:

 Expand our fundamental understanding of low-temperature combustion (LTC) processes to remove barriers to the implementation of clean and fuel-efficient automotive HCCI engines.

• Near-term objectives:

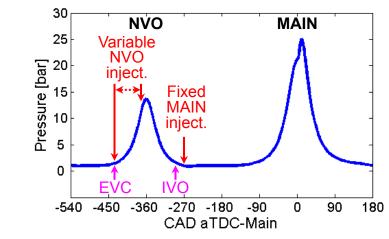
- Quantify thermal and chemical effects of the negative valve overlap (NVO) fueling strategy used to control and extend HCCI combustion.
 - Milestone: Perform experiments comparing thermal effects of NVO fueling with intake air heating.
 - Milestone: Perform seeding experiments to determine role of specific NVO product species.
- Characterize the extent of NVO reactions during NVO-fueled operation:
 - Milestone: Optimize our laser-absorption diagnostic to measure [CO] in fired engine.
- Advance the capabilities of our computer models of automotive HCCI combustion.
 - Milestone: Predict reactive products of NVO fueling using Chemkin 0-D engine model.
 - Milestone: Simulate fired NVO operation of our engine using KIVA model.

Approach

- Perform <u>experiments</u> in an optical engine equipped and configured for automotive HCCI combustion strategies.
- Develop and apply <u>diagnostics</u> to acquire in-cylinder measurements of fundamental physical processes.
- Apply suite of <u>computer models</u> to guide and interpret engine experiments.
- Leverage <u>knowledge gained</u> through technical exchange with DOE Vehicle Technologies program participants.

Technical Accomplishments – FY10

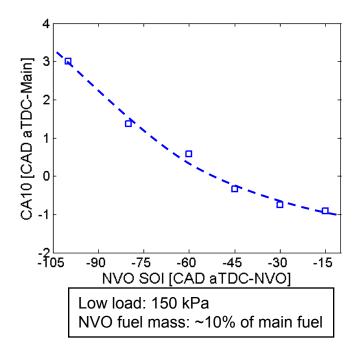
- Our current primary focus is NVO operation as a promising strategy for HCCI combustion control under low-load conditions.
 - NVO operation enables dilution/thermal control through residual gas retention;
 - In addition, fuel can be injected during NVO providing further control of main combustion.

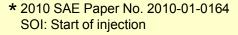


Terminology: EVC, IVO: Exhaust valve closing, intake valve opening CAD aTDC-Main: Crank angle degrees after top dead center of main combustion

Technical Accomplishments – FY10

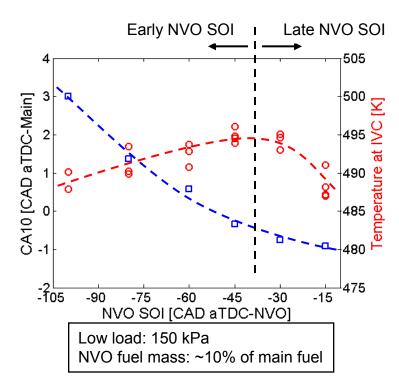
- Our current primary focus is NVO operation as a promising strategy for HCCI combustion control under low-load conditions.
 - NVO operation enables dilution/thermal control through residual gas retention;
 - In addition, fuel can be injected during NVO providing further control of main combustion.
- Accomplishments of our NVO research this year are described in this section:
 - NVO engine experiments (details at right);
 - Diagnostics for in-cylinder measurements;
 - Model development.
- Begin by looking at NVO-fueling experiments...


Typical operating conditions


Engine	Automotive, 1 cyl., optical
Valve overlap	-150 CAD
Resid. gas fraction	~50%
Geom. compr. ratio	11.5
Speed	1200 rpm
Fuel	Iso-octane

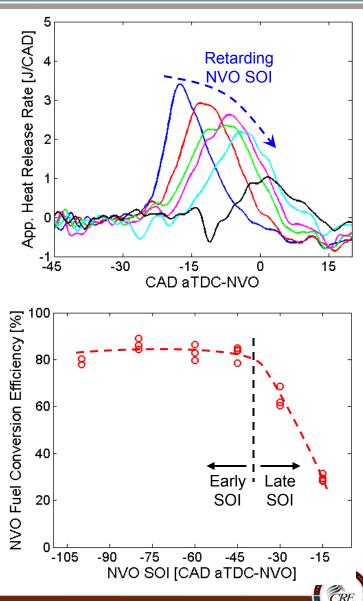
Terminology: EVC, IVO: Exhaust valve closing, intake valve opening CAD aTDC-Main: Crank angle degrees after top dead center of main combustion

NVO fueling assists control of main combustion


- Our experiments have characterized the effects of both the <u>amount</u> and <u>timing</u> of NVO fuel injection on combustion phasing.*
- The relationship between NVO fueling and main phasing is complex, e.g., effects of NVO SOI on:
 - 10% burn point of main combustion (CA10);

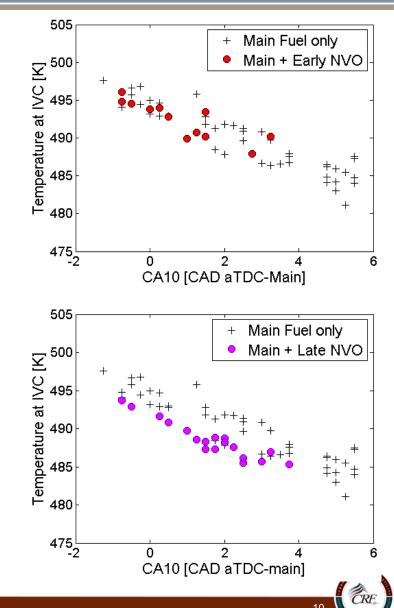
NVO fueling assists control of main combustion

- Our experiments have characterized the effects of both the <u>amount</u> and <u>timing</u> of NVO fuel injection on combustion phasing.
- The relationship between NVO fueling and main phasing is complex, e.g., effects of NVO SOI on:
 - 10% burn point of main combustion (CA10);
 - Temperatures at intake valve closing (IVC).
 - We have identified a clear distinction between early and late NVO SOI that is seen throughout our results.
- A convenient approach for analyzing our results is to begin with the NVO period and proceed through the cycle to main ignition...


Examination of HR during NVO period

• We have characterized several NVO processes:

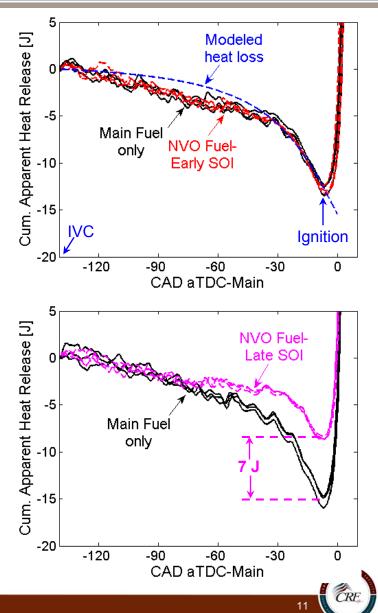
- Residual trapping via computed temperatures;
- Fuel injection via spray imaging;
- Combustion and reformation via:
 - Optical measurements of composition (more later);
 - Heat-release calculations.


NVO heat-release analysis provides insight:

- Phasing and duration of NVO HR progress monotonically with NVO SOI;
- But we find that NVO combustion efficiency falls off dramatically for late NVO injection.
- Piston wetting is an obvious factor:
 - We observe fuel films, pool fires, and rich combustion associated with late NVO injections;
 - These provide a plausible explanation of the late vs. early SOI behavior.
- Next experiments shift focus from the NVO period to the end of intake stroke...

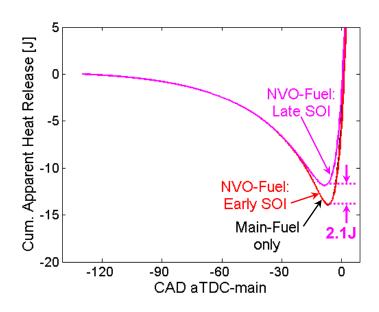
Examination of temperatures at IVC

- Useful insights come from comparing NVO-fueled (split injection) with main-fueling-only operation:
 - Does NVO fueling have the same effect as intake air heating on main combustion phasing?
 - If so, then we would say that its effect is primarily thermal, and not chemical.
- To aid comparison of these experiments, we developed a rigorous cycle-temperature model.*
- Sample graphs show calculated temperatures at IVC as a function of recorded CA10.
 - Early NVO fueling (top): for a given CA10, temperatures for the two cases are the same. → Thermal effect.
 - Late NVO fueling (bottom): The same CA10 is achieved with a lower $\rm T_{\rm IVC}.$
 - This is important evidence of a possible chemical effect.
- Further evidence of this chemical effect is seen if we look at the main compression stroke...



*2010 SAE Paper No. 2010-01-0343

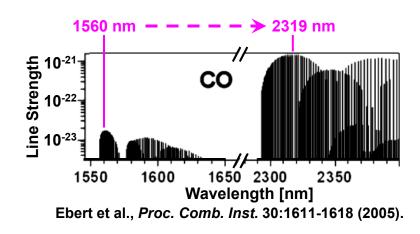
TRANSPORTATION ENERGY CENTER

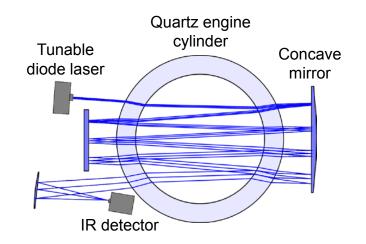

Examination of HR during compression stroke

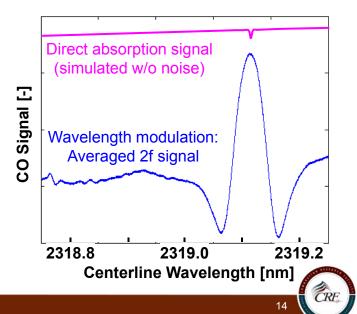
- Selected NVO- and main-fueled cases with the same main combustion phasing are compared:
 - Cumulative AHR is plotted from IVC through ignition.
- Early NVO plot (top): The traces are superimposed indicating an identical thermal history.
 - All traces generally follow predicted cylinder heat loss.
 - Again, we see only thermal effects for early NVO fueling.
- Late NVO plot (bottom): The late-NVO-fueling trace deviates substantially from the main-fuel case.
 - Exothermic reactions starting near -60 CAD release 7 J.
 - These anomalous results provide clear evidence of an important chemical effect of late NVO fueling.
- For further assessment of chemical effects we turned to chemical kinetic models...

CHEMKIN simulations provide support

- We modeled the same experiments using a Chemkin 0-D engine simulator, along with:
 - Detailed iso-octane/n-heptane kinetics mechanisms;
 - Initial and boundary conditions from the experiments.
- Model results support our engine data:
 - Main-fuel-only and NVO early-SOI fueling traces are indistinguishable.
 - But NVO late-SOI fueling leads to predicted early exothermic reactions, albeit less significant (2 J vs. 7 J).
- The simulation also identified potentially important reactive species carried over from NVO:
 - Candidates include ethylene, acetylene, and formaldehyde.
- To test specific candidate species, we began a series of seeding experiments this year...

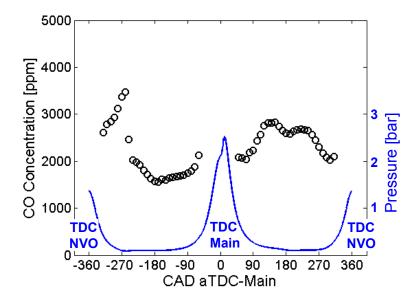

Seeding experiments


- These experiments test for chemical effects by seeding select species into the intake charge.
 - Candidates are reformed or partially reacted products of NVO reactions, identified by modeling.
 - Tests are main-fuel-only; no fuel is injected during NVO.
 - Seeded results are compared with unseeded.
- Sample experimental results shown for 2500 ppm CO:
 - For a given main combustion phasing, temperatures at IVC are the same for seeded and unseeded tests.
 - Also, no difference in HR is observed during compression.
 - We conclude that CO is not responsible for our anomalous early heat release.
- All seeding tests conducted so far have had similarly negative results, but we have other candidates to test.
- To capture further details of NVO chemistry we have developed a new diagnostic...

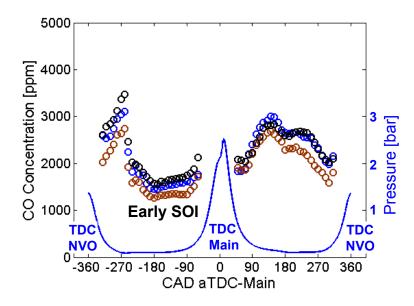


Tunable diode laser absorption spectroscopy

- We have developed a laser absorption diagnostic for measuring in-cylinder concentrations:
 - Multiple pass geometry provides spatial average;
 - Fast detector permits time-resolved measurements.
 - Tunable diode laser (TDL) allows selectivity and signal-to-noise enhancement.
- Current-year accomplishments for CO detection:
 - Upgraded TDL from 1560 to 2319 nm for big signal boost;
 - Implemented wavelength-modulation signal processing;
 - Successfully performed in-cylinder measurements...

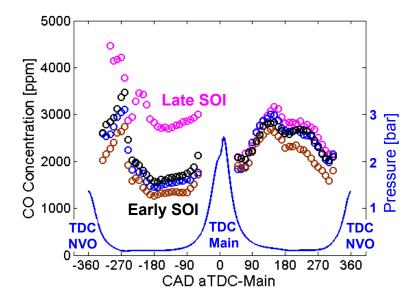


Cycle-resolved measurements of CO


- Sample CO data from NVO-fueled, fired operation:
 - 1-ms time resolution through most of cycle;
 - Gaps in data due to piston obscuration, high pressure.
- Data trends are complex but repeatable:
 - CO produced during NVO and main combustion;
 - CO mixing out during intake stroke;
 - Steady concentration during exhaust -- matches emissions bench within 100 ppm.

Cycle-resolved measurements of CO

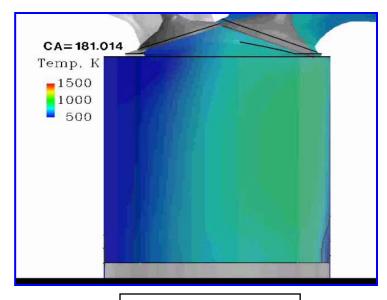
- Sample CO data from NVO-fueled, fired operation:
 - 1-ms time resolution through most of cycle;
 - Gaps in data due to piston obscuration, high pressure.
- Data trends are complex but repeatable:
 - CO produced during NVO and main combustion;
 - CO mixing out during intake stroke;
 - Steady concentration during exhaust -- matches emissions bench within 100 ppm.
- Initial trials performed for NVO SOI sweep:
 - Trends are similar for all early-SOI NVO fueling cases;


Cycle-resolved measurements of CO

• Sample CO data from NVO-fueled, fired operation:

- 1-ms time resolution through most of cycle;
- Gaps in data due to piston obscuration, high pressure.
- Data trends are complex but repeatable:
 - CO produced during NVO and main combustion;
 - CO mixing out during intake stroke;
 - Steady concentration during exhaust -- matches emissions bench within 100 ppm.
- Initial trials performed for NVO SOI sweep:
 - Trends are similar for all early-SOI NVO fueling cases;
 - Also, late-SOI fueling cases are distinct;
 - Measurements support our earlier observations.

• Future steps:


- Record [CO] for a full range of NVO-fueling conditions;
- Apply CO data to validate our KIVA model.
- Extend diagnostic to other species.

17 CRE

Modeling accomplishments

- Multi-year collaboration with UW and LLNL has produced a CFD/kinetics model of our engine:
 - Validation using fired data is in progress;
 - Includes NVO fueling and combustion/reforming;
 - Guides our understanding of NVO strategy.
- We have continued our development and application of several other modeling tools:
 - Cycle-temperature analysis tool;
 - Chemkin 0-D piston/cylinder simulator;
 - GT Power 1-D full engine model.

Animated KIVA results

- University partners:
 - <u>University of Wisconsin</u> and <u>Lawrence Livermore National Lab</u>: Development and application of a KIVA/Multi-zone kinetics model of the automotive HCCI optical engine continued this year.
 - <u>Stanford University</u>: Our 5-year diagnostic-development project was successfully completed this year.
- Automotive OEM partners:
 - <u>GM Research</u> is actively engaged in our automotive HCCI research program: interactions include bimonthly teleconferences, exchange of results, and hardware support.
 - Ford Research has defined topics of mutual interest that are the basis of new collaborations.
- DOE Working Group partners:
 - Research results are shared with DOE's <u>Advanced Engine Combustion</u> and <u>University HCCI</u> Working Groups in semi-annual meetings.

Future Work

- Engine experiments:
 - Pursue optical engine experiments designed to reveal underlying chemistry/physics of NVO operation.
- TDL absorption diagnostic:
 - Characterize the effects of NVO parameters on cycle CO production and consumption.
 - Extend diagnostic to detect additional species such as H₂O, CO₂, C₂H₂.
- KIVA model:
 - Validate model using measured in-cylinder CO concentrations.
 - Identify reactive products of NVO fueling for testing via seeding experiments.
 - Apply model predictions to interpret engine experiments.
- Upgrade engine facility:
 - Plan modifications based on the installation of similar engine hardware in the new Lean-Burn DI Spark-Ignition Fuels Lab (Sjöberg).
 - Improve optical access, upgrade components, and extend operating conditions to enhance relevance of our research to current engine development.

Summary

- The Automotive HCCI Engine project contributes to the development of low-temperature combustion strategies that can help achieve DOE emissions and efficiency goals.
- The project approach combines:
 - Optical engine experiments,
 - Diagnostic development,
 - Engine and combustion modeling.
- Current work focuses on the NVO combustion strategy. Accomplishments include:
 - New insights into thermal and chemical effects of NVO fueling,
 - New diagnostic capability for time-resolved, in-cylinder measurements of composition.
 - Advancement of HCCI engine modeling tools.
- Multiple collaborations leverage the impact of our research:
 - DOE's Advanced Engine Combustion group reviews research results and contributes feedback;
 - GM and Ford provide continual technical and material support;
 - University of Wisconsin, and LLNL participate in automotive HCCI engine modeling.

