

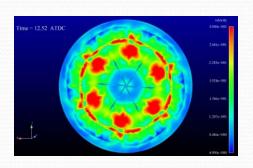
Assessment of Combustion and Turbulence Models for the Simulation of Combustion Processes in a DI Diesel Engine

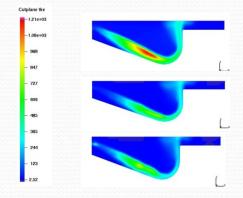
Yi Ren, Xianguo Li*

20/20 Laboratory for Fuel Cells and Green Energy RD&D

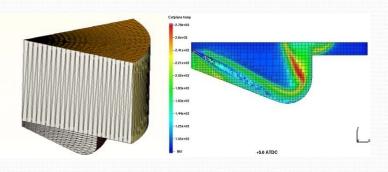
Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada

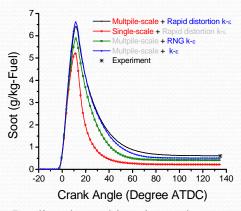
Objectives:


- •To evaluate the predictive capability of various combustion and turbulence models
- To conduct numerical investigation on the effects of biodiesel fuels on combustion and emission characteristics in a DI diesel engine


• Various applied combustion and turbulent models

	Ignition model	Combustion model	Turbulence model	Emissions models
Case 1		Multiple-scale CTC model	Rapid distortion RNG κ- ε	
			model	
Case 2	Shell auto-ignition	Single-scale CTC model	Rapid distortion RNG κ- ε	Hiroyasu soot model +
	model		model	Zeldovich NO _x model
Case 3		Multiple-scale CTC model	RNG κ- ε model	
Case 4		Multiple-scale CTC model	κ- ε model	


• Chemical Kinetic Mechanisms including 43 species and 160 reactions steps are used for the simulation of biodiesel fuled engine.


Overview of simulation on entire in-cylinder velocity profile

Predicted turbulent kinetic energy by different turbulence models at 5° ATDC

Computational domain and a representative result of in-cylinder combustion and emission

Predicted soot histories and comparison with measured result