

# Analysis of In-Motion Power Transfer for Multiple Vehicle Applications





PI: Jeff Gonder (NREL) Team: Aaron Brooker, Evan Burton, and Tony Markel

DOE Vehicle Technologies Annual Merit Review May 15, 2013

Project ID #: VSS105

This presentation does not contain any proprietary, confidential, or otherwise restricted information.

NREL is a national laboratory of the U.S. Department of Energy, Office of Energy Efficiency and Renewable Energy, operated by the Alliance for Sustainable Energy, LLC.

### **Overview**

### Timeline

Project Start Date: Sept 2012 Project End Date: Oct 2013 Percent Complete: 50%

### **Budget** Total Project Funding: \$415k

Funding Received in FY12: \$165k Funding for FY13: \$250k

### **Barriers Addressed**

- Risk Aversion
- Cost of Vehicle Electrification
- Infrastructure

### Partners (more on later slide)

- ORNL Lead for dynamic WPT feasibility study; input on WPT device assumptions
- ANL & INL Input on light-duty PEV lab and field test data
- Industry Additional input on WPT device and vehicle/ implementation assumptions

WPT = wireless power transfer; ORNL/ANL/INL = Oak Ridge/Argonne/Idaho National Laboratories

### **Relevance for DOE Fuel-Saving Mission**

- Increased electric energy available to a vehicle
  → Increased fuel displacement
- Potential BEV enabler
  - In-motion recharging would mitigate range anxiety
  - Could improve market penetration and aggregate fuel savings
- Opportunity to improve electrification cost-effectiveness
  - $_{\odot}~$  For BEVs, PHEVs and HEVs
  - Smaller/more affordable energy storage configurations may realize fuel displacement similar to a large-battery plug-in vehicle
  - Improve sales and total fuel savings





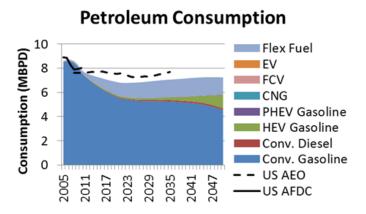


#### Risk aversion

- Very much an emergent area with significant uncertainties and risks
- Manufacturers therefore unlikely to pursue aggressively
- DOE investment warranted, given potentially large national benefits if successful (this project will help better quantify benefits)

#### • Cost

- Remains a barrier to widespread penetration of electrified vehicles
- WPT may improve the cost vs. benefit and marketability of electrified vehicle technologies


### Infrastructure

 Critical to coordinate R&D and analyze potential issues in parallel with vehicle and component investigations

### **Objectives**

- Establish/apply a comprehensive analysis methodology
- Quantify petroleum consumption and GHG emission impacts
  - Capture interaction between input assumptions
  - Evaluate marketability and resulting aggregate impact potential
  - Consider multiple vehicle and implementation approaches
- Coordinate efforts with ORNL and other partners





GHG = greenhouse gas

| Date      | Description                                                                                | Status<br>(as of March 2013) |
|-----------|--------------------------------------------------------------------------------------------|------------------------------|
| May 2013  | Dynamic Wireless Power Transfer<br>Technology Report                                       | On track                     |
| Sept 2013 | Report on Cost/Benefit Analysis of<br>Interstate Electrification with<br>Commercial Trucks | On track                     |

### **Approach: Overview**

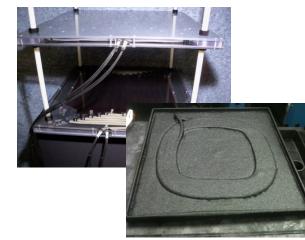
### Analyze technology potential

- In coordination/collaboration with partners
- Baseline modeling supported by validation data
- Informed by real-world vehicle usage and market drivers
- Considering multiple road, vehicle, drive cycle scenarios
  - With and without roadway electrification
  - Including system integration analyses

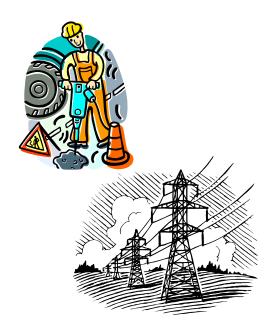
### For passenger vehicles

- Real-world driving data from travel surveys
- Consumer choice model predicts market penetration, aggregate petroleum, and GHG impacts

### • For commercial vehicles


- $\circ~$  Draw from fleet driving data
- Net present value/payback analysis for economic viability
- Particular focus on Class 8 trucks (large fuel user)






### **Approach: Technology Analysis**

- Coordinate with partners (ORNL & others)
  - Device power, efficiency, and costs
  - Impact of separation gap and misalignment
  - Commercial system comparisons
- Consider fuel savings and cost sensitivities
  - Infrastructure type and penetration
  - Device power, spacing, efficiency, and alignment
  - Different vehicle classes and powertrain types
- System integration analysis
  - Construction and maintenance implications
    - Leverage DOT interactions
  - $\circ$   $\,$  Magnitude and timing of additional grid load  $\,$
  - Rough assessment of V2I communications
    - Correlation with DSRC attributes



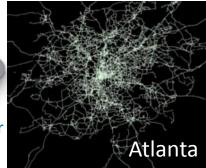
Photos courtesy of ORNL



V2I = vehicle to infrastructure; DSRC = dedicated short-range communication

### **Approach: LD Vehicle Evaluation Tools and Techniques**

#### Real-world GPS data


- Multiple cities in NREL's TSDC
- Driving type and location/road overlap

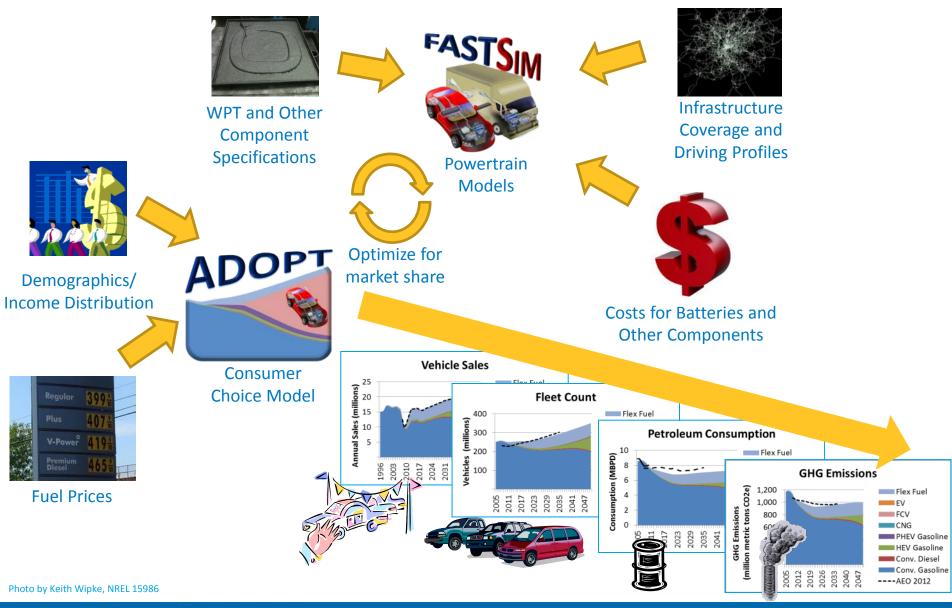
#### • Powertrain model for costs vs. fuel use

- Rapidly evaluate many scenarios
- Range of inputs and considerations
  - Driving distribution, battery life, component costs, and efficiency characteristics
  - Vehicle performance and fuel economy
  - Conventional, HEV, PHEV, BEV powertrains
- Consumer choice model for market prediction
  - Consider vehicle characteristics, fuel prices, income distribution, infrastructure availability
  - Additional details in back-up slide section

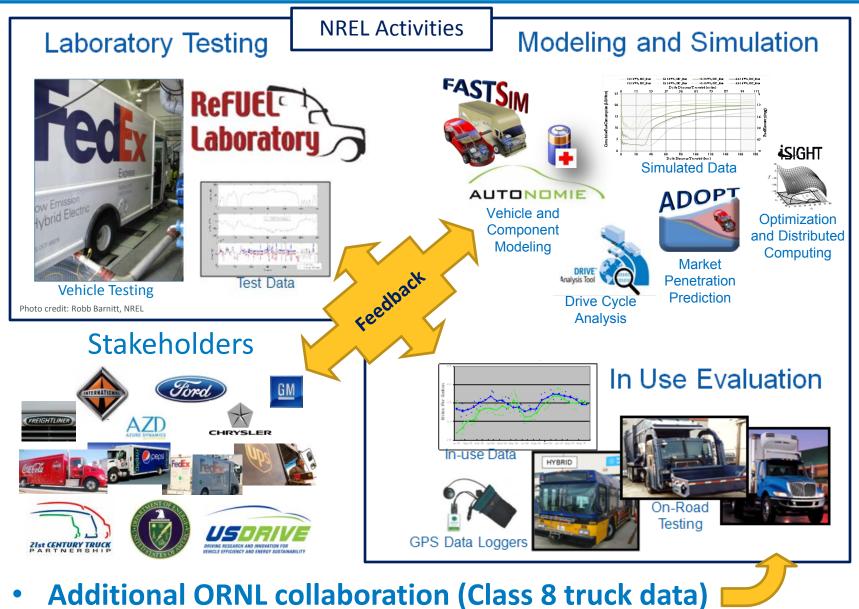
LD = light-duty; GPS = global positioning system; HEV = hybrid electric vehicle; PHEV = plug-in hybrid electric vehicle; BEV = battery electric vehicle





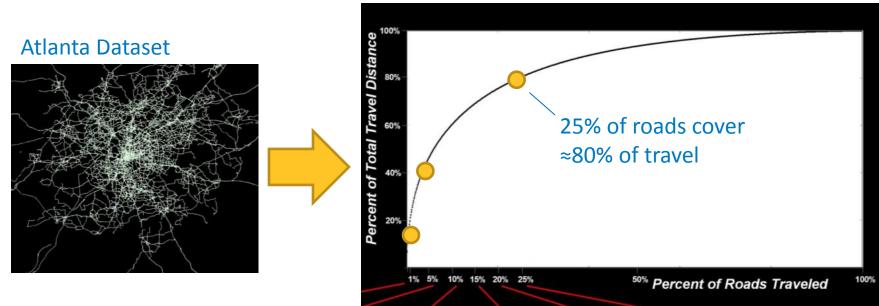



Future Automotive Systems Technology Simulator




Automotive Deployment Options Projection Tool

### **Approach: Link for Aggregate Impact Estimation**




### Approach: Coordinate with Industry, Lab and Field Testing for Commercial Vehicle Modeling $\rightarrow$ Cost vs. Benefit Analysis

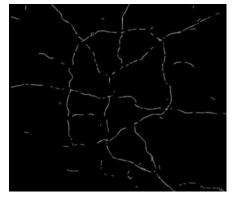


### Accomplishment: Explored Travel Distribution Across the Road Infrastructure

• Evaluated GPS data



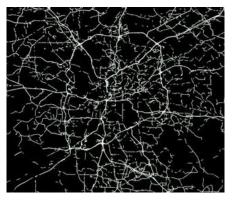
- Found that a significant amount of travel occurs on a small fraction of roads
  - If 1% of roadways electrified, 17% of travel would be covered
  - At 5%, ≈40% of travel would be covered
  - At 25%, ≈80% of travel would be covered


#### **Significance**

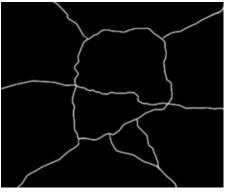
• Shows that relatively little infrastructure can cover a significant amount of travel (minimizes costs and maximizes benefits)

### Accomplishment: Examined Infrastructure Placement

- Evaluated spatial coverage of most heavily-traveled roads
  - Match between heavy travel and high-utility roads, e.g., Interstate highway
  - Interstate electrification would enable BEVs to travel beyond a roughly 50-mile radius to anywhere across the country







1% Roadway 17% Travel



5% Roadway ≈ 40% Travel



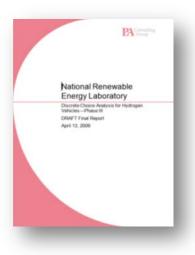
25% Roadway ≈ 80% Travel



Interstate Highway

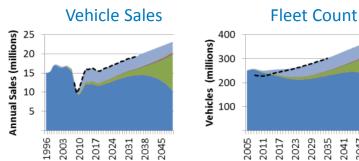
#### **Significance**

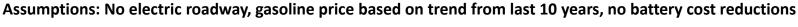
- Identifies opportunity to improve consumer preference for BEVs
  - Mitigates low range and slow recharge drawbacks that otherwise prevent long-distance trips

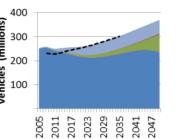

### Accomplishment: Incorporated Model Enhancement for Infrastructure Rollout

- Added infrastructure rollout impact on consumer preferences
  - Based on research from PA Consulting
  - Survey refined three times to ensure best possible results
  - Preference based on three parameters:
    - Metro area coverage
    - Medium distance coverage (within 150 miles of metro area)
    - Long distance coverage

#### **Significance**


- Key to estimating a city-by-city approach to rolling out electric roadway infrastructure
- Enables electric roadway rollout impact analysis to help determine
  - The best approach
  - The corresponding impact on market adoption

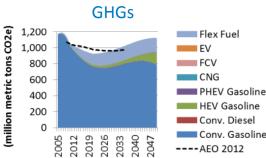


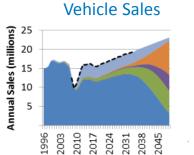


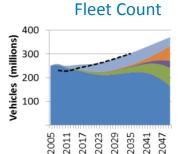
### Accomplishment: Initial Estimates of Electric Roadway Impact on Petroleum Use and GHG Emissions

#### **Draft results** from integrated passenger vehicle modeling and market approach





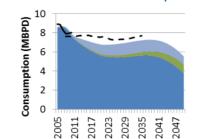

**GHG Emissions** 

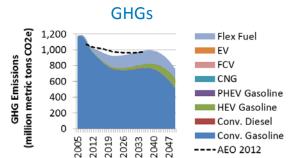


Assumptions: Same except electric roadway installed on 5% of roads (≈40% of travel, 7 year rollout starting in 2015)









2029 2035

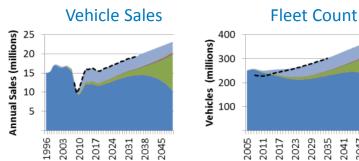
2041 2047

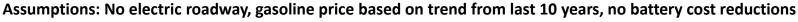
2023

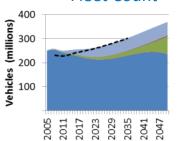
2005 2011 2017

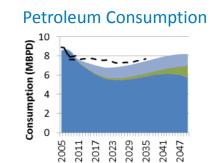





#### **Significance**


**Evaluates the potential impact of electric roadway infrastructure on vehicle** electrification and DOE's end goals


---- AEO 2012


### Accomplishment: Initial Estimates of Electric Roadway Impact on Petroleum Use and GHG Emissions

#### **Draft results** from integrated passenger vehicle modeling and market approach









**GHG Emissions** 

(million metric tons CO2e)

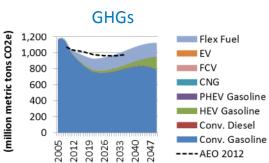
**GHG Emissions** 

1,200

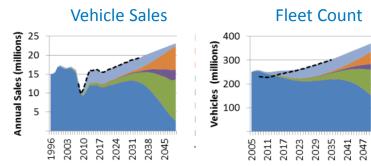
1,000

800

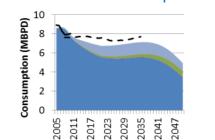
600


400

200


n

2005 2012


2019 2026

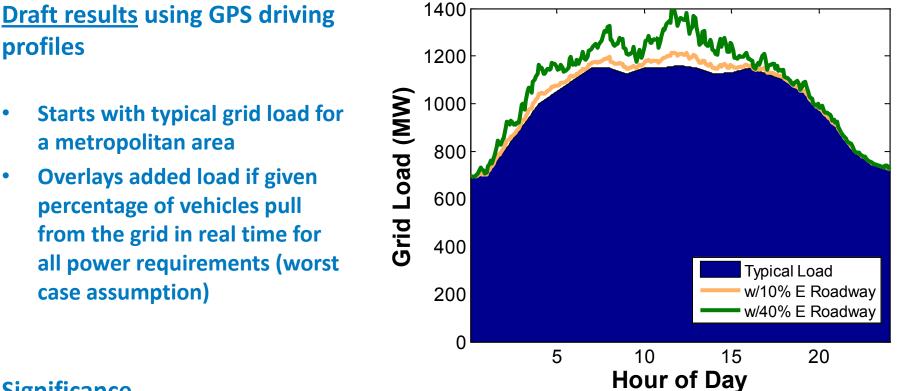



Assumptions: Same except electric roadway installed on 25% of roads ( $\approx$ 80% of travel, 7 year rollout starting in 2015)



#### **Petroleum Consumption**







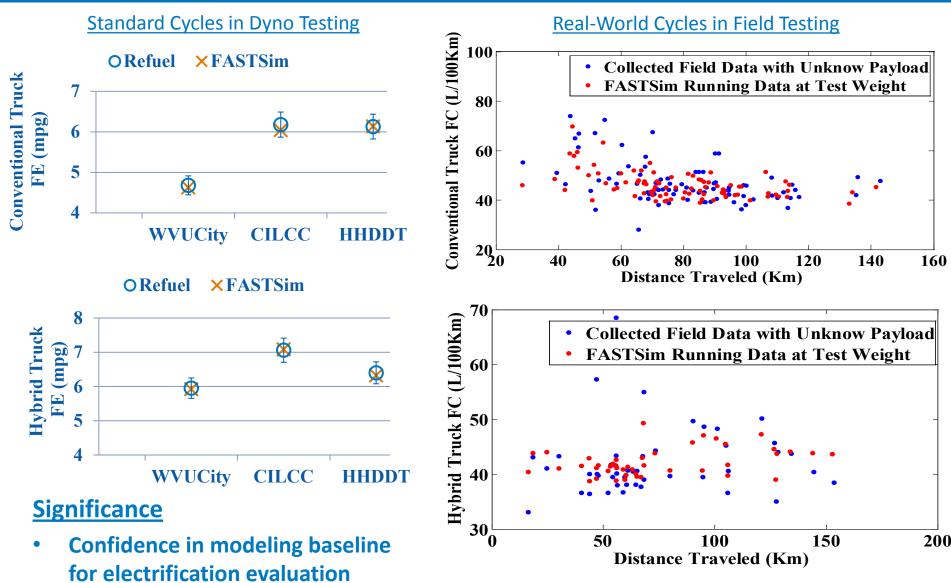

#### **Significance**

**Evaluates the potential impact of electric roadway infrastructure on vehicle** • electrification and DOE's end goals

### **Accomplishment: Initial Estimates of Roadway Electrification Contribution to Existing Grid Loads**



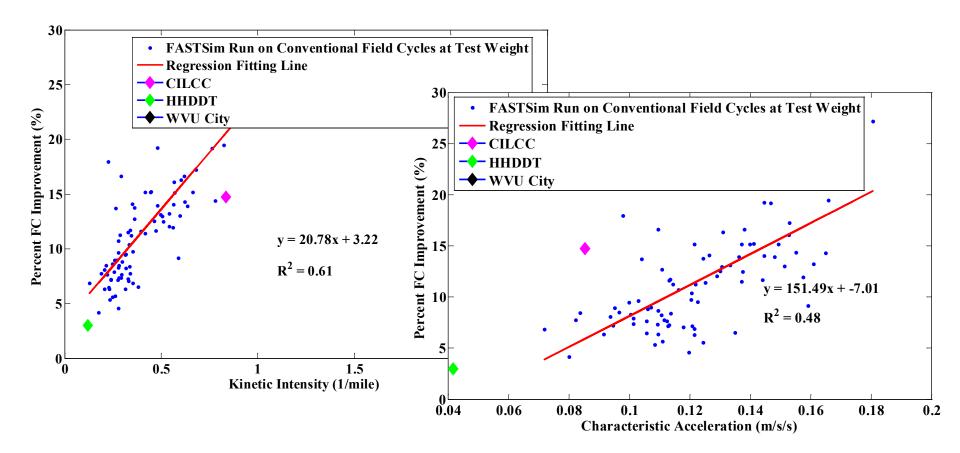
#### **Significance**


۲

۲

- Illustrates that incremental load may be significant relative to the base load, and that alignment with midday peak will likely need to be addressed
  - Could require infrastructure to vehicle communication to manage (e.g., draw from 0 vehicle battery instead of electrified roadway when grid at peak load)

### **Accomplishment (Class 8 Analysis):**


**Conventional and HEV Truck Model Development & Validation** 



WVU City/HHDDT/CILCC = West Virginia University City/ Heavy Heavy-Duty Diesel Truck /Combined International Local and Commuter Cycle

### **Accomplishment (Class 8 Analysis):**

**Influence of Cycle Characteristics on Hybridization Fuel Savings** 



#### **Significance**

- Improved understanding of hybridization-only Class 8 benefit potential
- Identified important cycle considerations for HD vehicle WPT analysis

HD = heavy-duty

### **Collaboration and Coordination**

- Oak Ridge National Laboratory
  - WPT project coordination, assumptions
  - Class 8 line-haul truck duty cycles
- Argonne and Idaho national labs
  - LD dyno and field data
- ReFUEL Laboratory
  - HD dyno test data
- Transportation Secure Data Center
  - Passenger vehicle GPS profiles
- DOE Vehicle Technologies Analysis
  - Consumer preference modeling
- Utah St. University and KAIST
  - Additional WPT device assumptions
- GM, Ford, Chrysler
  - Input on LD/consumer preference modeling
- Navistar, Volvo
  - Past/planned input on HD modeling and analysis



### **Proposed Future Work**

- Refine and add sensitivity analysis to LD modeling and aggregate market predictions
- Assess road construction and maintenance implications
  - Leverage DOT interactions
- Refine and expand analysis of load alignment with existing grid demands
- Complete assessment of V2I communication requirements and correlation with DSRC attributes
- Evaluate cost vs. benefit of various Class 8 truck roadway electrification scenarios against conventional/HEV baselines
  - Consider payment structures to recover infrastructure cost
  - Assess other commercial vocations (e.g., bus charging at stops)
  - Evaluate shared roadway use by multiple vehicle types

### **Summary**

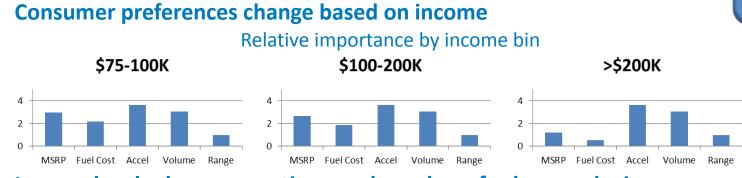
- Identified potential for roadway electrification to increase viability and aggregate fuel savings of electric drive vehicles
- Integrated multiple techniques to conduct thorough analysis
  - Partner inputs
  - Powertrain modeling
  - Market forecasting
- Formulated initial results

- Real-world LD travel profiles
- Commercial fleet in-use data
- Chassis dynamometer testing
- Much VMT is supported by a small number of roads (e.g., Interstate)
  - Improved mobility can increase consumer interest in BEVs
  - Electrifying just 5% of roads could double electric drive penetration vs. business as usual case

#### • Continued analysis will further explore impacts of

- Road coverage
- Device efficiency
- Vehicle types

- Fuel price
- Construction and maintenance
- Existing grid loads


VMT = vehicle miles travelled



# **Technical Back-Up Slides**

### **NREL Captures Important Consumer Preference** Aspects and Validates Model Predictions

ADOPT



• Income levels change over time, and number of sales vary by income



- Competes advanced vehicles with entire existing fleet
- Successful models are duplicated (more options for the consumer)
- Extensive validation
  - Multiple years
  - 10 different regions
  - o 10 dimensions

#### **Significance**

۲

- Percent HEV Sales By Acceleration Sales By MPG (listed by max in bin) Sales 10,000,000 5,000,000 8,000,000 20% 4,000,000 6,000,000 15% 3,000,000 4,000,000 Actual 2,000,000 Actual 10% 2.000.000 Model 1,000,000 Model 5% 15 20 25 30 40 50 11 0% Fuel Economy (MPG) Max Bin Accel Time (secs 0-60 MPH) Actual Model
- Increased accuracy and confidence in market penetration modeling predictions

## **NREL's Transportation Data Centers**

#### Alternative Fuels & Advanced Vehicles Data Center (AFDC)

 Clearinghouse of information on advanced vehicles and fuels

#### Hydrogen Secure Data Center (HSDC)

 Tech validation of hydrogen-powered applications and their infrastructure

#### Transportation Secure Data Center (TSDC)

Secure archival of and access to detailed transportation data (e.g., GPS travel profiles)

Commercial Fleet Data Center (CFDC)

Detailed MD/HD
 drive cycle and
 powertrain data from
 advanced fleets

| Functions                                                                                                        | AFDC | HSDC | TSDC | CFDC |
|------------------------------------------------------------------------------------------------------------------|------|------|------|------|
| Securely archive sensitive data                                                                                  |      | Υ    | Y    | Υ    |
| Provide public/composite data                                                                                    | Y    | Υ    | Υ    | Υ    |
| Quality control processing                                                                                       | Y    | Υ    | Υ    | Υ    |
| Spatial mapping/GIS analysis                                                                                     | Y    | Υ    | Υ    | Υ    |
| Custom reports for providers or DOE                                                                              |      | Υ    |      | γ    |
| Application process for controlled access                                                                        |      |      | Υ    |      |
| Detailed GPS drive cycle analysis (including<br>the interactive DRIVE tool and Fleet DNA<br>portion of the CFDC) |      |      | Y    | Y    |

GPS = global positioning system; MD/HD = medium-/heavy-duty vehicles; GIS = geographic information system

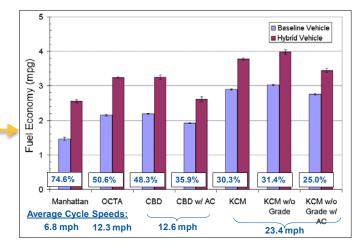
### Transportation Secure Data Center (TSDC) www.nrel.gov/tsdc

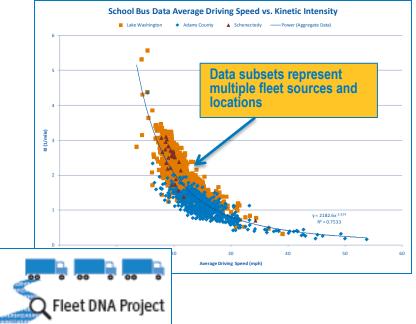
- Secure archival of, and access to, detailed transportation data
  - o Travel studies increasingly use GPS → valuable data
  - TSDC safeguards anonymity while increasing research returns
- Various TSDC functions
  - Advisory group supports procedure development and oversight
  - Original data securely stored and backed up
  - Processing to assure quality and create downloadable data
  - Cleansed data freely available for download
  - Controlled access to detailed spatial data
    - User application process
    - Software tools available through secure Web portal
    - Aggregated results audited before release

Sponsored by the U.S. Department of Transportation (DOT) Operated by the NREL Center for Transportation Technologies and Systems (CTTS); Contact: <u>Jeff.Gonder@nrel.gov</u>



NRC report\*

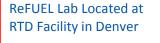




GPS = global positioning system

\* See recommendations from this 2007 National Research Council report: <u>books.nap.edu/openbook.php?record\_id=11865</u>

### **Commercial Fleet Data Center (CFDC):** Supporting Transportation Energy Data Collection for the Fleet DNA Project

- A medium & heavy duty, vocationally-focused, Webbased, drive cycle database of core vehicle usage metrics
- Value:
  - Helps quantify drive cycle Impacts on MD/HD Technology: many, many more vocations than LD
  - Provides reference data for drive cycle development (could support EPA / NHTSA rule making)
  - OEMs: better understanding of customer use profiles.
  - Fleets: information on how to achieve the maximum return from new vehicle technology investments
  - Funding Agencies: optimize impact of financial incentive offers.
  - R&D Activities: data source for modeling and simulation
- DOE, AQMD, CARB, Calstart, and others participating
  - NREL partnering with ORNL to acquire data
- Ongoing field evaluation projects will help to supply data
- 10-12 vocations targeted initially highest fuel usage and/or VMT






### **NREL's Renewable Fuels and Lubricants Laboratory**



- Chassis dynamometer
- HD engine dynamometer
- Single cylinder engine dynamometer
- Emissions
  measurement
- Portable emissions
  measurement system
- Fuel storage and handling





Refue

