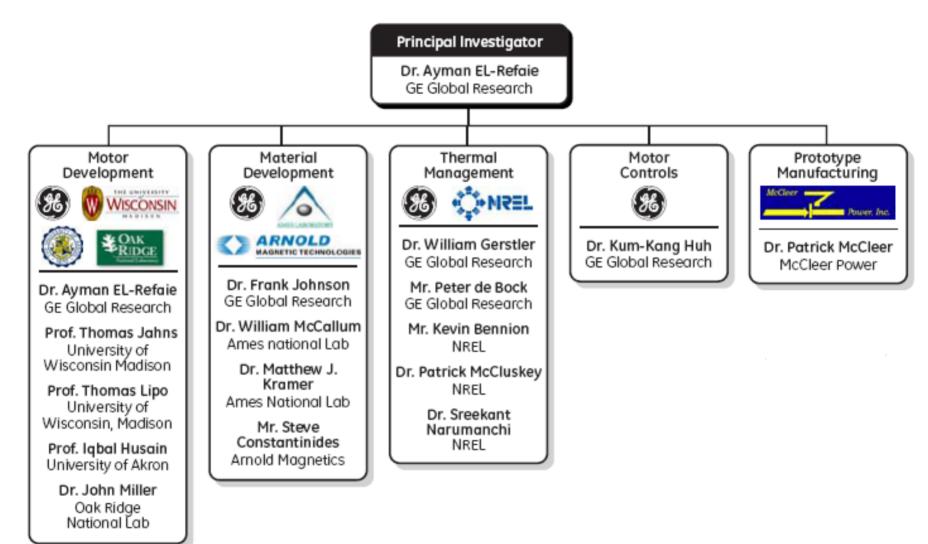
Alternative High-Performance Motors with Non-Rare Earth Materials

DE-E0005573 DOE Peer Review Presentation

Ayman EL-Refaie, Project Manager & Principal Investigator Frank Johnson, Materials Design Leader

GE Global Research May 15, 2013



imagination at work

This presentation does not contain any proprietary, confidential or otherwise restricted information

Team and stakeholders

2 GE Global Research May 15, 2013

Overview

Timeline

- Start: October 1, 2011 (official kickoff with DoE February 7, 2012)
- End: January 31, 2016
- 30% complete (Kickoff meeting Feb. 7, 2012)

Budget

- \$ ~12M total budget
- \$ ~6M DOE share
- \$ ~6M GE cost share

•Funding received from the DoE to date: \$ 2,757,776

Barriers

Very challenging set of specs

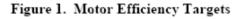
- High efficiency over a wide speed and load ranges
- High power density and high coolant inlet temperature
- Low cost targets based on 100,000 units/year
- High speed poses mechanical challenges
- No rare-earth permanent magnets

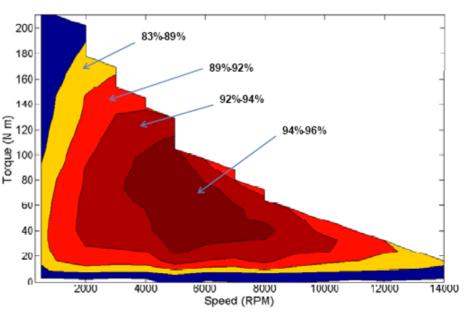
Partners

- GE Global Research (lead)
- GE Power Conversion/GE
 Licensing
- University of Wisconsin-Madison
- North Carolina State
 University
- University of Akron

- ORNL
- NREL
- McCleer Power
- Ames National Lab
- Arnold Magnetics

The Problem


- The specifications for hybrid vehicle motors are challenging in terms of power density, efficiency and cost. This requires a comprehensive approach to advance the state of the art, including novel concepts to push past barriers.
- High speed is key to high power density
- High speed leads to higher electrical frequency
- Higher stator core and rotor losses
- On top of all these challenges, eliminating rareearth permanent magnets makes the problem an order of magnitude more challenging



Project Objective (FY13/FY14)

Items	Specification				
Max. Speed	14,000rpm				
Peak Power	55kW @ 20% speed for 18sec				
Maximum Current	400Arms				
Cont. Power	30kW @ 20~100% speed @ Vdc=325				
Efficiency	Refer to target efficiency map				
Operating Voltage	200~450V (325V nominal)				
Back EMF	<600Vpk line-to-line @ 100% speed				
Torque Pulsation	<5% of Peak Torque @ any speed				
Characteristic Current	< Maximum Current				
Weight	≤35kg				
Volume	≤9.7L				
Cost @100k	≤\$275				
Ambient (outside housing) Operating Temperature	-40~140°C				
Coolant inlet	105°C, <10LPM, 2psi drop, <20psi inlet				
Minimum isolation impedance-phase terminal to GND	1Mohm				

- Finalize tradeoff study to identify promising motor topologies and advanced materials
- Down-select and build/test promising concepts for 55kWpk non-rare earth motor to meet DOE specifications

Relevance

Developing a low-cost, high-performance advanced traction motor is a key enabler to meeting the 2020 technical targets for the electric traction system. Elimination of rare-earth permanent magnets is very strategic in terms of eliminating the uncertainty regarding sustainability of rare-earth magnets

	2010 ^ª	2015 ^b	2020 ^b
lost, \$/kW	<19	<12	<8
pecific power, kW/kg	>1.06	>1.2	>1.4
ower density, kW/L	>2.6	>3.5	>4.0
ifficiency (10%-100% speed at 20% rated torque)	>90%	>93%	>94%

^aBased on a coolant with a maximum temperature of 90°C.

^b Based on air or a coolant with a maximum temperature of 105°C.

^c A cost target for an on-board charger will be developed and is expected to be available in 2010.

Project Uniqueness and Impacts

- The project proposes a very comprehensive approach in terms of identifying the technologies that will meet the required performance
- The project will explore various motor topologies; some include no magnets at all and some include non-rare earth magnets
- Some of the motor topologies use only conventional materials while others will be enabled by advanced materials that will be developed under the project
- Advanced materials including magnetic as well as electrical insulating materials will be developed to enable the motors to meet the required set of specifications
- Advanced motor controls and thermal management techniques will also be developed.
- By evaluating the wide range of motor topologies and advanced materials, down-selected topologies/materials are expected to meet the required set of specifications

Approach

- Perform tradeoff study of various motor topologies (≈10 topologies: some use conventional materials while others will be enabled by new materials)
- Identify promising scalable materials and produce coupons showing the expected properties (1 hard magnetic, 2 soft magnetic, 1 dielectric)
- Down-select promising topologies/materials
- Design/build/test 2-3 proof-of-principle motors
- Down-select final motor topology
- Design/build/test 3 identical motors as the key project deliverable(s)
- Develop cost model for the final motor

FY13 Approach and Milestones

Nov	Dec	Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep
opologies	tradeoff					Down- select 2-3 promising motor topologies				
						st motor		test 1 st motor prototype Build 2 nd motor prototype		
ls develop	ment									Down- select matl's for scale-up
							structu relatio • Materi	ure/processing/ nships al test coupons of concept	/property s to show	taviala
		opologies tradeoff				Build 1 prototy	select 2-3 promising motor topologies Build 1 st motor prototype	opologies tradeoff select 2-3 promising motor Build 1 st motor prototype Build 1 st motor Is development	opologies tradeoff select 2-3 promising motor motor build 1st motor prototy prototype Build 2 prototy Sca Structure/processing Build 1st coupout Proof of concept Sca	opologies tradeoff select 2-3 promising motor topologies Build 1 st motor prototype test 1 st motor prototype Build 2 nd motor prototype Is development • Processing methods and structure/processing/property relationships • Material test coupons to show

Go No/Go Decision Point:

Challenges/Barriers:

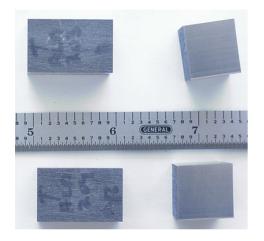
imagination at work

results how do they compare to the baseline IPM with rare-earth magnets. Testing of the 2nd prototype and the building of the 3rd prototype will take place in 4th quarter of 2013 The set of specifications is very challenging and eliminating rare-earth permanent magnets is a big hit in terms of torque density and efficiently Global Research May 15, 2013

The key go no/go decision point will be after the 3 down-selected motor prototypes are built and tested to determine base don test

Accomplishments to Date Motor accomplishments:

- Finalized the motor topologies that will be evaluated and done evaluating 9 of them
- Preliminary down-selection of 3 topologies that will be built and tested:
 - 1 has reduced rare-earth content
 - 1 has non-rare earth magnets
 - 1 has no magnets
- Identified the theoretical properties for the advanced materials to be developed and quantified their impact on some of the motor topologies
- All the contracts with our external partners are in place and technical collaboration already started


Materials accomplishments:

- Applied advanced manufacturing methods to non-rare earth permanent magnet materials and quantified processing factor dependence of key magnetic properties
- Completed first microstructural investigation GE-synthesized non-rare-earth Permanent magnets at Ames Laboratory
- Demonstrated higher tensile strength soft magnetic laminates with magnetic properties approaching those of Si-Steel
- Demonstrated stability of high temperature insulation materials at temperatures > 250 °C
- Performed initial studies on scalability of new materials for sub-scale prototype motor builds.

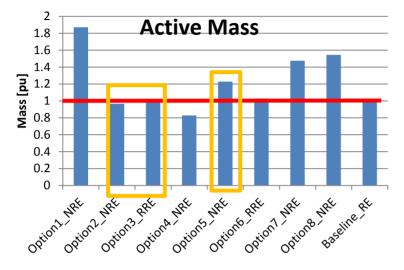
Materials accomplishments

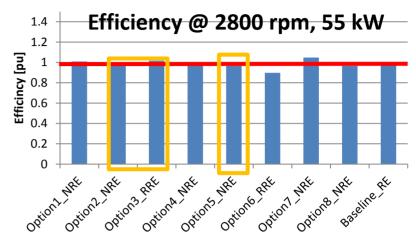
Advanced processing of nonrare-earth permanent magnets

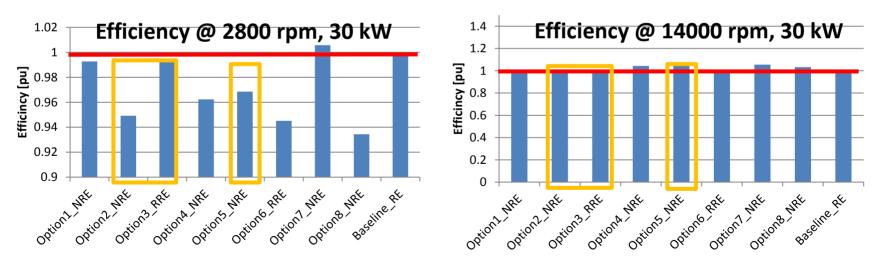
Higher tensile strength soft magnetic laminates

High temperature insulation

3" I.D. "Statorettes" manufactured to test performance of high temperature insulation




11 GE Global Research May 15, 2013



Motors Accomplishments

NRE: Non-Rare Earth RRE: reduced Rare Earth RE: Rare-Earth

Several motor topologies are promising in terms of power density and/or efficiency

Collaborations

Motor Development:

- North Carolina State University: Evaluation of motor topologies
- University of Akron: Evaluation of motor topologies
- University of Wisconsin: Evaluation of motor topologies
- NREL: Evaluation of thermal management schemes
- ORNL: Evaluation of motor topologies and materials

Materials Development:

- Ames Laboratory: High resolution microscopy of magnetic materials
- Arnold Magnetic Technologies: Specialized magnetic material processing and characterization

Proposed Work Beyond FY13 FY14

- Finish test proof-of-principle motors/materials
- Final selection of motor topology/materials based on test results of proof-of-principle motors
- Initiate design for final motor (s)
 FY15
- Scaled manufacturing of selected materials
- Final motor build and test

Summary

- Significant progress made since last year
- •9 motor topologies fully evaluated
- •3 down-selected to build prototypes
- •The first design is almost finalized and the build will be initiated shortly
- •Impact of advanced materials on various motor topologies fully-quantified
- •Test coupons of advanced motor materials have been manufactured and characterized
- •Scalable manufacturing methods for advanced materials have been identified
- •Improved performance has been quantified in soft magnetic laminates and high temperature insulation
- •Contracts with all external partners in place and significant technical progress made with most of them

