

Advanced Technology Vehicle Lab Benchmarking – Level 1

2013 U.S. DOE Hydrogen and Fuel Cell Program and Vehicle Technologies Program Annual Merit Review and Peer Evaluation Meeting

Henning Lohse-Busch, Ph.D. - Principal Investigator

Argonne National Laboratory May 14, 2013

Project ID # VSS030

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Benchmarking at ANL started in 1998
- FY13 Completed Testing:
 - Leaf BEV, Volt, Jetta TDI, Malibu
 - Thermal Impact study
 - Conventional Vehicle Study
- FY13 and FY14 Test Vehicles
 - See Milestone on slide 6

Budget

- FY2012 \$600k
- FY2013 \$1,300k
- Other Leveraged DOE Projects (separate funding): Codes and Standards test support, TADA (OEM PHEV), Mass Impact Study, Thermal Evaluations, Conventional Vehicle Study

- DOE VSSST barriers addressed:
 - Cost (B)
 - New, lower-cost Sonata HEV design
 - Lack of Standardized Testing Protocols (D)
 - Validating BEV and PHEV test procedures
 - Support of SAE committee (J2951 Drive metrics, JXXX Powertrain rating, ... etc...)
 - Constant advances in technology (F)
 - Public data generation from benchmarking recent mass-produced BEV and PHEV.
 - New HEVs compared to previous models

Partners:

- AVTE (Advanced Vehicle Technology Evaluation): DOE, INL, ANL, ECOtality
- DOE, National Laboratories, USDrive, OEMs, Suppliers, Vehicle Competitions

<u>Relevance:</u> Objectives of the Advanced Powertrain Research Facility

Benchmark Objective

"Provide to DOE and Partners the Best Advanced Vehicle Test Data and Analysis"

Codes and Standards Objective

"Assist in codes and standards development with public and independent research and data"

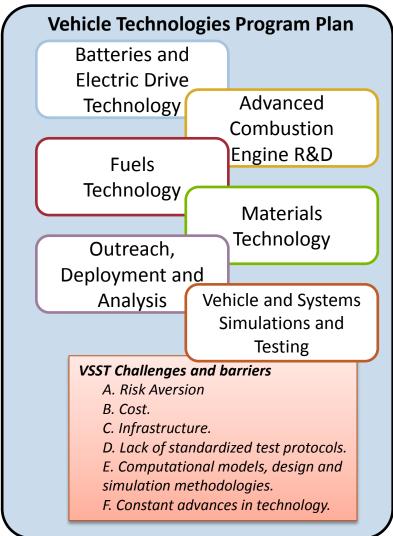
Laboratory Testing Mission

Enable petroleum displacement through technology assessment & data dissemination

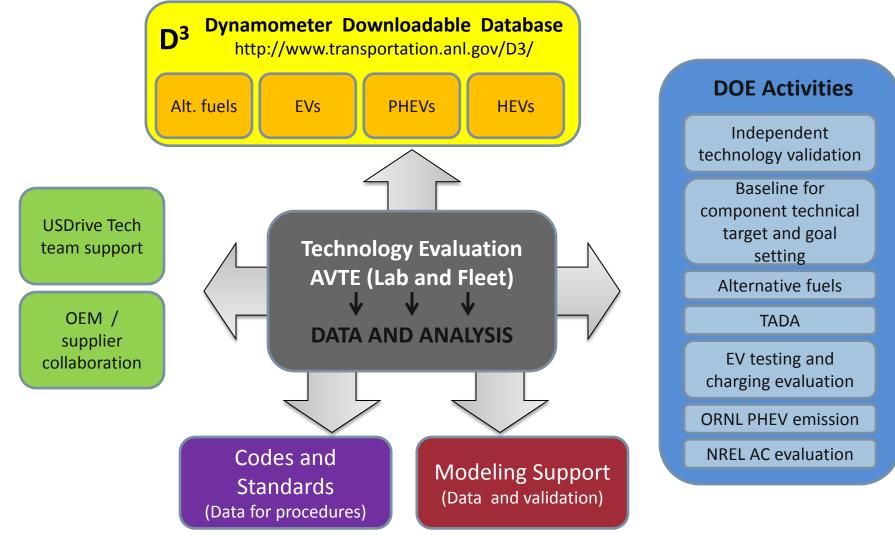
- Establish the state-of-the-art automotive technology baseline for powertrain systems and components through test data generation and analysis
- Provide independent and public evaluation of emerging technology
- Generate data to support model creation and validation, as well as DOE target setting

Focus for FY13

- Technology benchmarks for diesel, CNG, conventional, HEV, PHEV, BEV.
- Thermal effects on energy consumption and powertrain behavior
- Status of conventional vehicle evolutionrelentless raising of the baseline



Relevance: Advanced Technology Benchmark


- Vehicle Research: dynamometer testing
 - Vehicle system testing
 - Energy consumption (fuel + electricity)
 - Emissions
 - Performance
 - Vehicle operation and powertrain strategy
 - 'In-situ' component and system testing
 - Component performance, efficiency and operation over drive cycles
 - Component mapping
 - Technology assessment and goal setting

APRF direct impact on DOE VTP

<u>Relevance</u>: Enable Petroleum Displacement through Technology Assessment and Data Dissemination

"Knowing how good you are requires an accurate picture of how good everybody else is"

Milestones: APRF Provides Data for a Wide Variety of Vehicle Technologies

	Milestones	2012-Q3	2012 Q4	2013 Q1	2013 Q2	AMR 2013 Q3
	Jetta TDI					
9	Chevrolet Malibu eco					
	Chevrolet Volt					
-	Honda Civic CNG					
	VW Jetta HEV					
Ľ	Toyota Prius PHEV					
<	Ford CMax Energi PHEV Ford CMax					
	Mitsubishi i					- <mark></mark> -
F	Peugeot 3008 Hybrid4 (L2)					
7	ANL Chevrolet Volt (L2)					
(Chrysler TADA PHEV					
	Thermal Impact Study					
1	Vass Impact Study					
(Conventional Vehicle Study					
(Codes and Standards Support					

2012 Fiat 500 2012 F150 Ecoboost

2013 Altima CVT 2013 Sonata DI

2012 Chrysler 300

2012 Fusion V6

2012 Civic

2012 Focus

2009 Jetta TDI

2011 Sonata HEV

2010 Prius And A Party

Level 1

Level 1 Studies Level 2

Chrysler TADA

2013 Jetta TDI

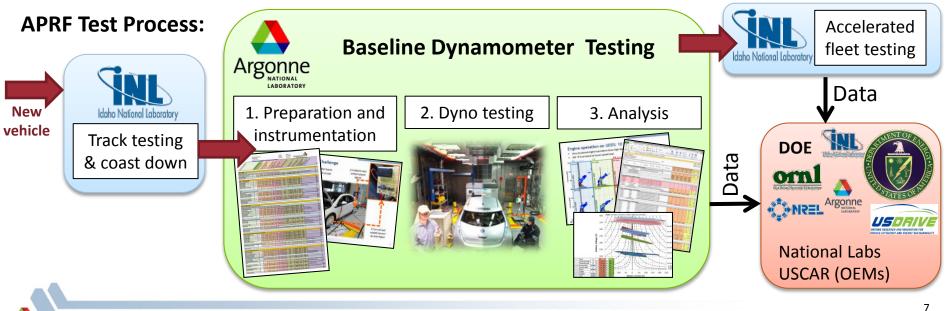
2013 Civic CNG

2013 Volt

2013 Malibu Eco

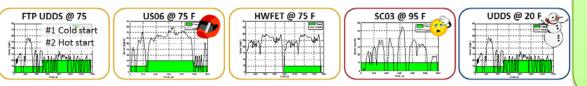
Approach: Well-Established and Proficient Testing Methods Adjusted to Individual Technologies

The vehicle benchmark activity has been refined during the past decade, which has resulted in:


- Advanced and unique facilities and instrumentation
- Continuous improvement of testing procedures
- Standardization of test plans including instrumentation and drive cycles which are adjusted for individual vehicles
- Significant knowledge of advanced vehicles and testing methods

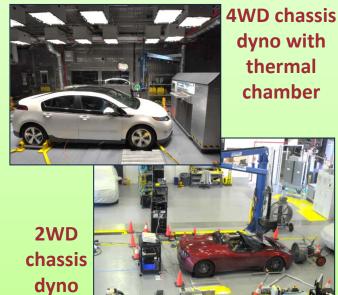
Expertise in testing Powertrains

- Conventional
- Hybrid Electric (HEV)
- Plug-in HEV (PHEV)
- Battery Electric (BEV or EV)
- Fuel Cell Vehicle


Alternative fuels

- Hydrogen, Natural Gas
- Ethanol, Butanol
- Diesel (Bio, Fisher-Tropsch)

<u>Approach:</u> Purpose Built Research Laboratory for Automotive Benchmark Activities


- Level 1 testing: Basic and comprehensive instrumentation
 - Level 1 = non-intrusive instrumentation
 - Vehicle characterization (fuel and energy consumption, emissions, performance)
 - CAN-decoded data, speeds, thermocouples, battery power, other technology specific removeable instrumentation
 - Vehicle operation and strategy
- Drive cycles and test conditions
 - Standard drive cycles, technology specific cycles, performance tests, vehicle and component mapping cycles
 - Thermal "5-Cycle" test conditions: 20°F, 72°F and 95°F with 850 W/m² radiant solar energy

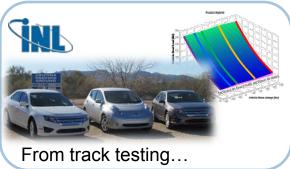
Advanced Powertrain Research Facility

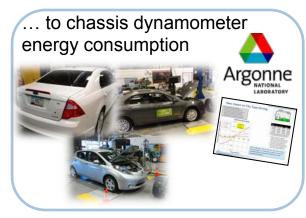
The right tools for the task:

- Two chassis dynamometer cells
- Custom DAQ, flexible, moduledriven, used in both cells
- Thermal chamber which is 5-Cycle compliant (+)

Accomplishments: Measured Today's Conventional Vehicle Efficiencies by Technology

gy)	40 -	C	Con	vei	ntio	ona		HE	V	C	Con	vei	ntic	ona		HE	V	
ener	35 -	4	l cy	I.	60	cyl.	e l			4	l cy	Ι.	6 0	cyl.	Diesel			
ycle fuel	30 -				1 1 1 1 1 1		DCT Diesel			сут	6 speed	speed	speed	8 speed	6 spd Die			
wheel) / (C	[%]	CVT	6 speed	6 speed	6 speed	8 speed	6 speed D	-		 Ú	9	9	9	8	Ð			
Vehicle efficiency = (Positive cycle energy at wheel) / (Cycle fuel energy)	Efficiency						TDI	id	Hybrid						TDI	id	Hybrid	
cycle			ata				Jetta	Hybr	ata- F	 a	ata				Jetta	Hybr	ata-	
(Positive	Lehicle	Altima	Hyundai Sonata	usion	usion	Chrysler 300	Volkswagen Jetta	usion-	ai Sonata-	Nissan Altima	Hyundai Sonata	usion	usion	Chrysler 300	Volkswagen .	usion-	ai Sona	
ciency =	10	Nissan		Ford Fusion	Ford Fusion			Ford Fusion- Hybrid	Hyundai			Ford Fusion	Ford Fusion	Chrysl		2010 Ford Fusion- Hybrid	Hyundai Sonata-	
hicle effi		2013	2013	2011	2012	2012	2013	2010	2011	2013	2013	2011	2012	2012	2013	2010	2011	
Ve	0 -			City (L	y D JDDS	riv cycle	ing				Hi	ghv (H)	Nay NFET			ng		

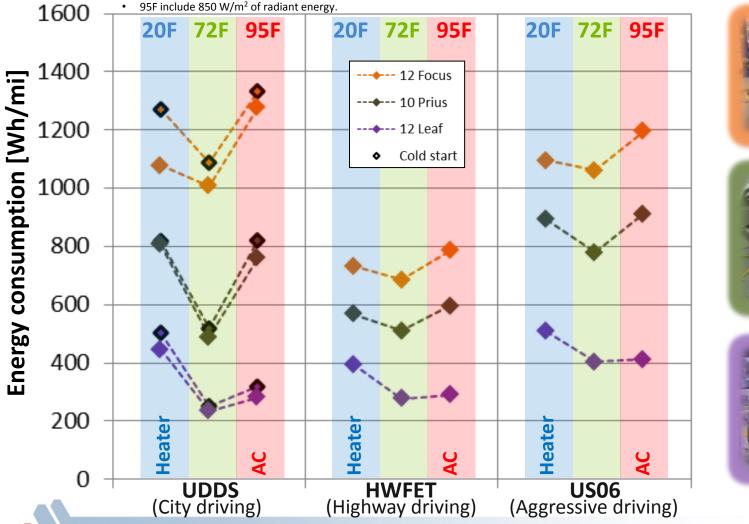

- Vehicle efficiency is dependent on driving style
 - City driving: transient with lower loads and idle time impacts efficiency
 - Highway driving: higher steady engine loads result in greater average efficiency
- Technology observation
 - Engine size: smaller engine \rightarrow higher average efficiency
 - CVT & 8 speed: enables optimized engine loading in city driving
 - Diesel: highest vehicle efficiency of conventional technology
 - HEV: increased freedom to leverage engine operation


Accomplishments: Energy Consumption Benefits of Reducing Vehicle Mass

- The mass of a conventional vehicle, a hybrid electric vehicle and a battery electric vehicle were varied between +500 lbs. to -500 lbs. to determine impact on energy consumption
- The light weighting benefits on fuel/energy consumption depends on the driving type.
 - In city-type driving and aggressive type driving with many and/or larger accelerations, light weighting for any vehicle type will reduce the energy/fuel consumption
 - In highway-type driving where a vehicle will cruise at relative steady speed, light weighting vehicles does not significantly reduce the energy/fuel consumption
- Light weighting a conventional vehicle will provided the largest improvement in fuel consumption due to the relative lower powertrain efficiency compared to a battery electric vehicle.

		FOI a 10	% mass reu	uction						
		[%]		[Liter gas equivalent/100km]						
	consu	mption red	uction	consumption reduction						
Driving type	City	Highway	Aggressive	City	Highway	Aggressive				
Conv V6	~3.5	~3.0	~4.5	~0.35	~0.19	~0.40				
HEV	~2.5	~1.5	~4.0	~0.12	~0.06	~0.19				
BEV	~5.0	~0.1	~2.5	~0.08	~0.01	~0.10				

Ear a 10 % mass reduction


Study Assumptions and limitations

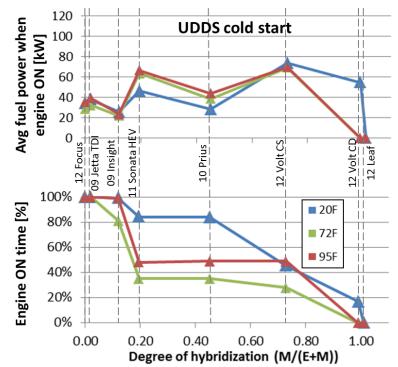
- Vehicle powertrain remained constant
- Study does not include mass compounding
- Results based on single car per category
- Road load input based on track test data
- Manufacturer recommended tire pressure maintained for all weight cases per vehicle

Accomplishments: Ambient Temperatures and Driving Style Impact Energy Consumption

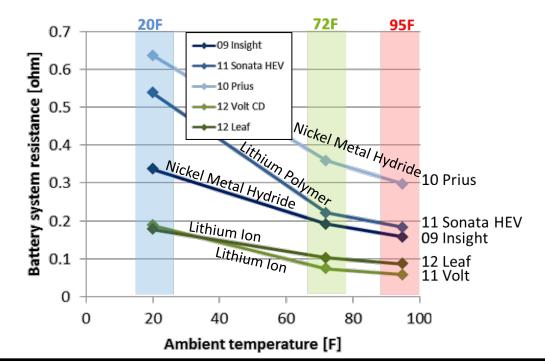
Test Notes:

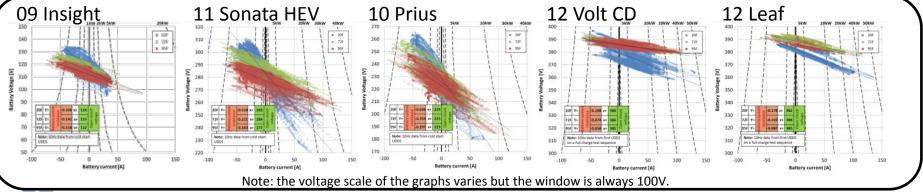
- Cold start \rightarrow vehicle soaked at target temperature for at least 12hr. Powertrain is hot in the other tests.
- In 20F and 95F, climate control setting targeted 72F in automatic mode.

 Visit of the second second


Conventional

2012 Nissan Leaf


<u>Accomplishments:</u> Studies Impact of Ambient Temperature on Advanced Technology Vehicles

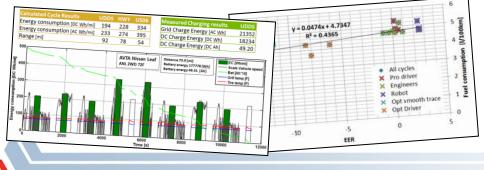

- Comprehensive thermal study: 7 vehicles tested on cold start UDDS, hot start UDDS, HWFET and US06 at ambient temperature of 20°F, 72°F and 95°F with 850 W/m² of sun emulation
- The more efficient the vehicle the higher the impact of climate control on energy consumption and range
- 20°F cold start has the largest cold start penalty due to high powertrain losses and frictions. Once the powertrain reached operating temperatures the energy consumption is close to the 72°F results again
- 95°F environment requires a constant A/C compressor load that impacts the energy usage across all vehicle types on hot and cold starts

12 Focus	09 Jetta TDI	09 Insight	11 Sonata HEV	10 Prius	12 Volt	12 Leaf
Conventional 2.0L DI 6 spd DCT Gasoline	<i>Conventional</i> 2.0L TDI 6 spd DCT Diesel	<i>Mild HEV</i> 1.3L CVT 10kW motor	Pre-trans HEV 2.4L DI 6 spd auto 30kW motor	<i>Full HEV</i> 1.8L DI Power split 60kW prim motor	<i>PHEV EREV</i> 1.4L DI 111kW prim motor	BEV Single gear 80kW motor

<u>Accomplishments:</u> Quantified Battery System Resistance Change with Temperature

Accomplishments: Collaborations Contributing to Technology Development

CNG conversion testing


 Standard conversion benchmark to capture current state of the art

E-250 CNG conversion

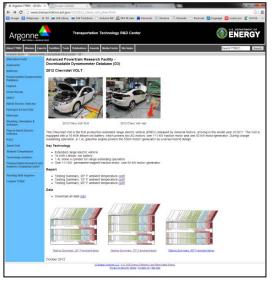
Codes and Standards Support

- SAE J2951[™] Drive Metric implementation
- SAE J1634[™] EV short cut verification

TADA (Technology Assessment and Deployment Activity)

- Data used for SAE J1711[™] validation
- OEM vehicles → wider EV range and better controlled to a more refined PHEV compared to conversions
- 5-cycle testing with testing at OEM for cold and hot testing

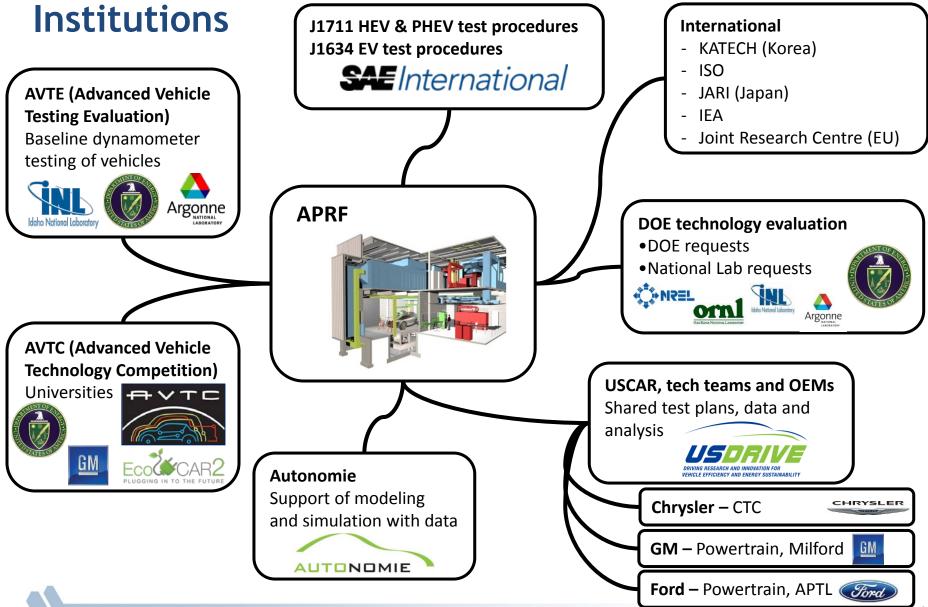
Chrysler TADA vehicle


<u>Accomplishments:</u> Downloadable Dynamometer Database (D3) <u>www.transportation.anl.gov/D3/</u>

Vehicle Database organized by vehicle type

A Page for each vehicle

- Brief description with key technologies and pictures
- Analysis presentation / report (when available)
- Test summary results
- 10Hz data download



Test Summary Results Each test has a unique test ID

<u>10Hz raw data files</u> Files named by unique test ID

Organia	 Lohse-Busch, Henning R.A Extract all files 			
-	Name	Туре	Compressed size	
	61205066_Data.txt	TXT File		Pa
	61205067_Data.txt	TXT File	514 KB	
E	61205068_Data.txt	TXT File	533 KB	No
	61205084_Data.txt	TXT File	543 KB	No
	61205085_Data.bd	TXT File	515 KB	No
	61205086_Data.bd	TXT File	516 KB	No
	61205097_Data.bd	TXT File	555 KB	No
	61205098_Data.txt	TXT File	499 KB	No
	61205099_Data.txt	TXT File	508 KB	No
	61205100 charge post test- 73F	TXT File		No
	61205100_Data.txt	TXT File		No
	61205101_Data.txt	TXT File		No
	61205102_Data.txt	TXT File		No
	61205103 charge post test- 73F	TXT File		No
	61205103_Data.txt	TXT File		No
	61205105_Data.txt	TXT File		No
	61205106_Data.txt	TXT File		No
	61205107 charge post test- 20F	TXT File		Vo
-	61205107 Data.tvt	TXT File	41 KB N	ło -

Coordination: Existing Collaborations with Other

<u>Proposed Future Work:</u> Level 1 Benchmark Will Continue with Emphasis on Thermal Testing

Future AVTE Level 1 Vehicle Testing Plans (FY13 and FY14)

- Ford Focus EV
- Toyota Prius PHEV

- VW Jetta HEV
- Coda Sedan EV
- Ford CMax Energi PHEV
- Ford CMax HEV

- Toyota Rav4 EVHonda Civic HEV
- Honda Accord PHEV
- Mitsubishi I EV
- New Vehicle Technology Evaluations
- New PHEVs/BEVs from other OEMs
- Many OEMs adding novel powertrain warmup hardware and controls
- Climate control load investigations
- Lab can achieve 0° F for investigations in very cold operation
- Lab continues to be Fuel Cell Vehicle capable
- Benchmark new Natural Gas Vehicles (NGV)

4

Summary

- Level 1 Benchmark Activity provides precise laboratory test data for a wide range of vehicle technologies that address DOE goals
 - Establish state-of-the-art automotive technology baseline for powertrain systems and components through data collection and analysis
 - Providing independent evaluation of technology and support for DOE target setting
 - Generating test data for model development and validation to encourage speed-to-market of advanced technologies
 - Supporting codes and standards development for unbiased technology weighting

Accomplishments from Level 1 testing

- Conventional vehicle baseline study
- Mass impact study
- Thermal impact on energy consumption and powertrain operation
- AVTE vehicle testing in-progress
- Test results and raw data available at Downloadable Dynamometer Database on public website (http://www.transportation.anl.gov/D3/i)
- Maintaining a Link to Industry is an important component of vehicle testing
 - Sharing best test practices, facility hardware recommendations, data analysis methods
 - Industry technology developers provide insight into what data is of interest

Technical Back-Up Slides

Argonne Argonne **4WD Chassis Dynamometer Thermal Test Cell**

"Research and Data Driven Lab" "Independent Public Data"

• Test cell features

- ✓ 4WD chassis dynamometer
 - Variable wheel base (180inches max)
 - 250 hp/axle
 - 300 to 12,000 lbs.. inertia emulation
- ✓ Radiant sun energy emulation 850W/m² (adjustable)
- ✓ Variable speed cooling fan (0−62mph)
- ✓ Gaseous fuel and hydrogen capable
- ✓ Diesel: Dilution tunnel, PM, HFID

Thermal chamber

- ✓ EPA 5 cycle capable (20°F, 72°F and 95°F + 850W/m² solar load)
- ✓ Demonstrated as low as 0°F
- Intermediate temperatures possible

- Research aspects
- Modular and custom DAQ with real time data display
- Process water available for cooling of experiment components
- Available power in test cell
 480VAC @ 200A
 - 208VAC @ 100A
- ✓ ABC 170 Power supply capable to emulate electric vehicle battery
- ✓ Custom Robot Driver with adaptive learning
- Several vehicle tie downs
 chains, low profile, rigid,...
- 2, 3 and 4 wheel vehicle capable
- ✓ Expertise in testing hybrid and plugin hybrid electric vehicles, battery electric vehicles and alternative fuel vehicles

Special instrumentation

- High precision power analyzers (testing and charging)
- CAN decoding and recording
- ✓ OCR scan tool recording
- ✓ Direct Fuel Flow metering
- ✓ Infra Red Temperature camera
- In cylinder pressure indicating systems
- ✓ In-situ torque sensor measurement
- ✓ 5 gas emissions dilute bench with CVS (modal and bag emissions analysis)
- ✓ FTIR, Mobile Emissions unit
- Raw and Fast HC and NOx bench
- Aldehyde bench for alcohol fuels

Advanced Powertrain Research Facility 2WD Chassis Dynamometer

GORBEL

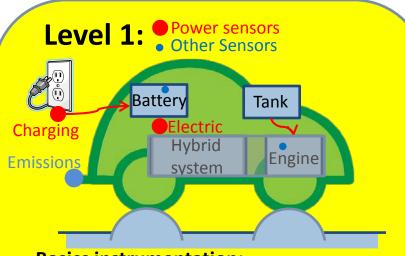
GORBEI

"Research and Data Driven Lab" "Independent Public Data"

• Test cell features

- ✓ 2WD Light Duty / Medium Duty chassis dynamometer
 - 300 hp
- 300 to 14,000 lbs.. inertia emulation

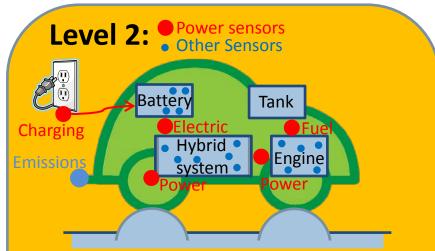
- 10,000 lbs.. max weight driven axle


- ✓ Multiple cooling fans available
- ✓ Vehicle lift (max 10,000 lbs..)
- Remotely located control room
- Research faspects area
- Modular and custom DAQ with real time data display
- ✓ Flexible to adopt any drive cycle
- ✓ Available power in test cell
 - 480VAC @ 200A & 100A
 - 208VAC @ 50A, 30A & 20A x3
- ✓ ABC 170 power supply capable to emulate electric vehicle battery
- ✓ Custom Robot Driver with adaptive learning
- Expertise in testing hybrid and plug-in hybrid electric vehicles, battery electric vehicles and alternative fuel vehicles

APRE (Accorded Powertrain Research Fadility)

- Special instrumentation
 - High precision power analyzers (testing and charging)
- ✓ CAN decoding and recording
- ✓ OCR scan tool recording
- ✓ Direct Fuel Flow metering
- ✓ Infra Red Temperature camera
- In cylinder pressure indicating systems
- In-situ torque sensor measurement
- SEMTECH-DS (Mobile Emissions unit) with AVL DVE mass flow sensor

<u>Approach:</u> Dynamometer Vehicle Benchmark Testing Approach - Level 1 and Level 2 Testing



Basics instrumentation:

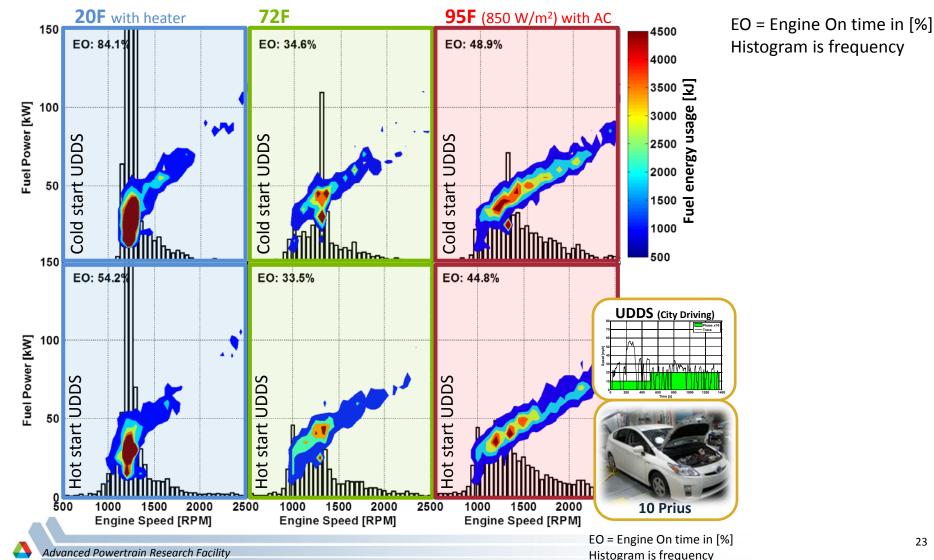
- Engine speed, fuel flow (bench), oil temp
- Battery, Charger V I (Hioki)
- CAN (if possible)
- Further ... if required (but still non invasive)

Purpose:

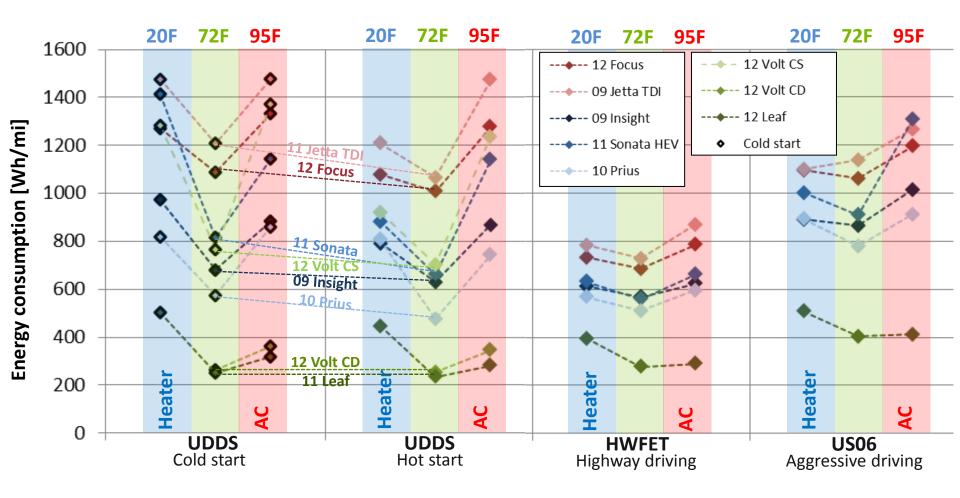
- Vehicle operating parameter study
- Vehicle characterization (energy consumption, emissions level, performance)

Complete and invasive instrumentation:

- Incremental to level 1
- Engine, shaft torque & speed sensors
- All major power flows (mechanical, electric,...)
- Component specific instrumentation


Purpose:

- Energy analysis, efficiency analysis on vehicle and components
- Component characterization in vehicle system


Accomplishment: Engine operation on UDDS 10 Prius

95F \rightarrow higher power level for AC

- Very clustered engine operation show high degree of freedom in engine operation
- 20F \rightarrow fuel island at lower speed load

Accomplishment: Energy Consumption at Different Temperature on Several Certification Cycles

