VEHICLE TECHNOLOGIES PROGRAM

U.S. DEPARTMENT OF

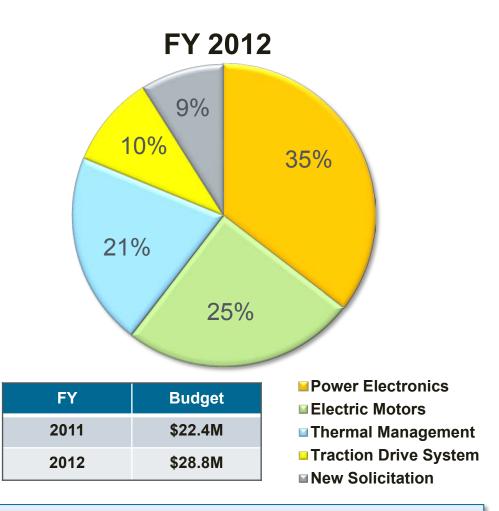
Energy Efficiency & Renewable Energy

Advanced Power Electronics & Electric Motors R&D Plenary Session

May 14, 2012

Susan Rogers Advanced Power Electronics and Electric Motors (APEEM) R&D Vehicle Technologies Program U. S. Department of Energy

APEEM Charter & Budget

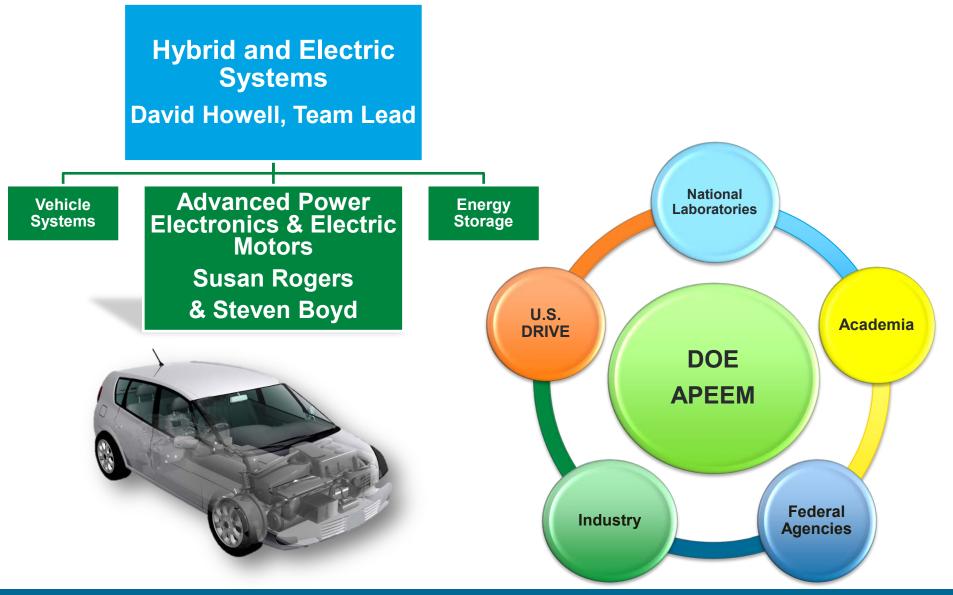

Energy Efficiency & **ENERGY Renewable Energy**

MISSION:

Develop Advanced Power Electronics & Electric Motor technologies to accelerate market penetration of hybrid & electric vehicles.

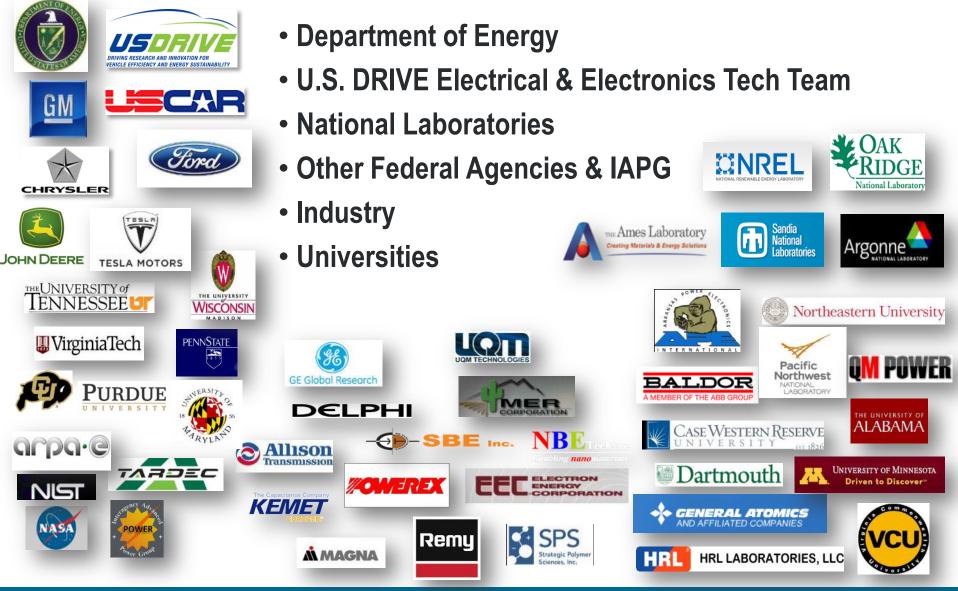
APEEM technologies *must be:*

- affordable
- smaller & lighter
- more efficient



U.S. DEPARTMENT OF

FY 2015 Goal: Reduce cost of electric drive technologies. Demonstrate a cost of \$12/ kW through data, simulation & modeling.


U.S. DEPARTMENT OF Energy Efficiency & Renewable Energy

APEEM Collaboration

Energy Efficiency & Renewable Energy

Energy Efficiency & Renewable Energy

Reduce Dependence on Oil

Via Vehicle Electrification

Traction Drive Requirements: 55 kW peak power for 18 sec; 30 kW continuous power; 15-year life

Technical Targets								
Traction Drive System						Power Electronics		
						(\$/kW)	(kW/kg)	(kW/l)
Impacts	Reduce	Reduce	Reduce	Reduce Energy Storage		7.9	10.8	8.7
\rightarrow	Cost	Weight	Volume	Requirements		7	11.2	10
		Specific	Power			5	12	12
Year	Cost (\$/kW)	Power	Density	Efficiency		÷		
Tear	(\$/KVV)	(kW/kg)	(kW/l)	Efficiency		Electric Motors		
2010*	19	1.06	2.6	>90%		(\$/kW)	(kW/kg)	(kW/l)
2012	17	1.08	3.0	>91%		11.1	1.2	3.7
2012			0.0			10	1.24	4
2015	12	1.2	3.5	>93%		7	1.3	5

* **2010 traction drive system cost target was achieved** with development of the GM integrated traction drive system project; 2015 weight and size targets were also met.

APEEM Research & Focus Areas

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

TRL 4 & 5

Traction Drive System

- Technology benchmarking
- Innovative system designs

Power Electronics

- Wide bandgap devices
- Capacitors
- Electrical architectures
- Packaging
- Vehicle charging

TRL 2 & 3

Electric Motors

- Non-permanent magnet (PM) motors
- PM motors
- New magnetic materials
- Motor materials

TRL 2 to 5

Thermal Management

- Heat transfer technologies
- Thermal stress and reliability
- Thermal systems
 integration

R&D required in all areas to achieve targets

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Technology benchmarking

Testing, evaluation, and assessments provide current technology status and trajectory as motivation for setting R&D priorities.

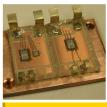
Innovative system designs

Modular and integrated solutions to meet 2015 and 2020 size, weight, and cost targets.

Key to achieving 2020 targets

APEEM Power Electronics R&D

U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

Electrical Architecture

Cost, performance, weight & volume

- ▶ Reduce capacitance \rightarrow reduces volume & cost
- > Integrate functions \rightarrow reduces size & cost; improve reliability
- ➢ Reduce Si content → reduces cost

Packaging

Volume, cost & thermal management

- ➢ Device level → improves reliability & performance; enable high temperature operation
- Module level → reduces cost & size; improve efficiency

WBGs → high temperature operation

Capacitors

High-temperature capability & cost

Improves reliability & volume

Wide Bandgap Devices

Optimal utilization of 'next generation' devices

- Improves reliability & efficiency
- Enables high-temperature operation
- Reduces volume & weight

Charging

Diminish vehicle impact
> Reduce cost & weight

Reduce cost and size while enhancing efficiency

8 | Vehicle Technologies Program

eere.energy.gov

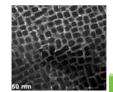
APEEM Electric Motors R&D

Non-permanent magnet (PM) motors

Cost, performance, weight & volume

- ➢ Eliminate PMs → reduce cost
- System level improvements → enable PE cost reduction

PM motors


Cost & performance

➢ Design improvements → reduce magnets required; enable use of new magnetic materials

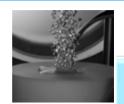
Magnetic materials

Cost Reduction

- Stronger magnets → less magnetic material
- → Higher-speed motors → less materials
- Increase temperature capability

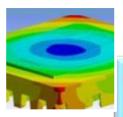
New materials

Cost & efficiency


- Increase temperature capability:
 - laminations
 - insulation
 - potting

Improve motor designs and eliminate rare earth magnets to reduce cost

APEEM Thermal Management



Energy Efficiency & Renewable Energy

Heat Transfer Technologies

➢ Develop, demonstrate and characterize performance of heat transfer technologies and interface materials → Results feed Thermal Systems Integration activities

Thermal Stress and Reliability

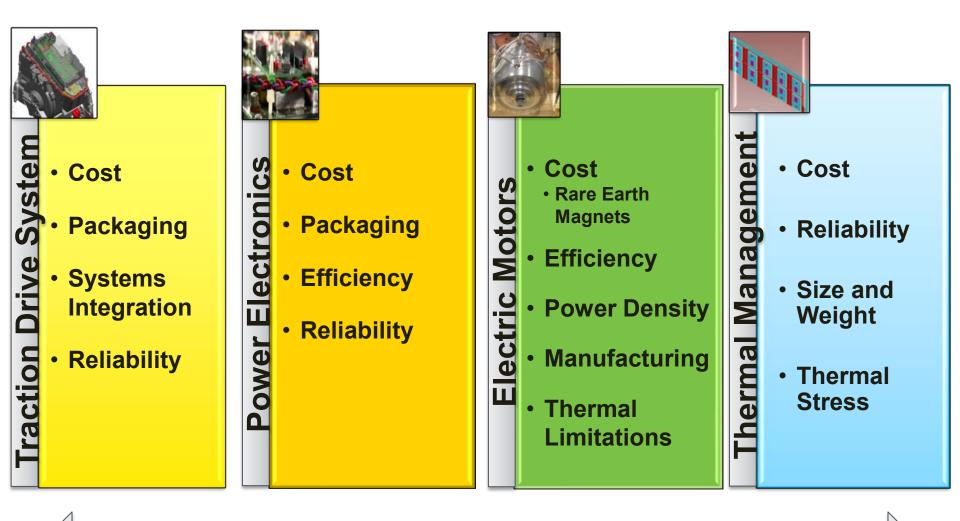
- Develop predictive thermal stress and reliability models
- Guide research decisions to reduce technology development time
- \succ Develop technologies that achieve reliability and lifetime goals \rightarrow Improve reliability

Thermal Systems Integration

- > Confirm thermal research objectives and define thermal requirements
- > Identify and facilitate thermal solutions for traction drive system
- Develop & characterize thermal technologies components
- Enable integrated vehicle thermal management

Improve reliability, and reduce size, weight and cost

10 | Vehicle Technologies Program


Reduce size.

weight and cost

Challenges

U.S. DEPARTMENT OF ENERGY Rer

Energy Efficiency & Renewable Energy

Cost reduction required in every area

Commercialization Activities Existing Vehicle/Product Line

- Semikron Inverter Power Module **
 - Device level packaging innovations reduced inverter cost and size

Ballard DC to DC Converter

Converter design improvements increased efficiency and reduced cost

Semikron Power Device Attachment

Sintering technology achieved higher reliability; used in all Semikron power modules

Liquid-Cooled Heat Exchanger

New pin-fin shape improved thermal performance

Semikron inverter heat exchanger

GM Fuel Cell Vehicle

Renewable Energy

Ford Fusion

Semikron IGBT module

eere.energy.gov

Commercialization Activities Existing Vehicle/Product Line

Injection Molded Magnets •

Developed bonded magnets used in traction motor for cost reduction

• **Brushless, External Field Coil Motor Architecture**

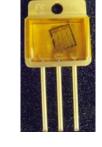
Improved performance and decreased operating costs by adapting electric drive technology for vehicle alternators

Energy Efficiency & Renewable Energy

Commercialization Activities Future Vehicle Applications

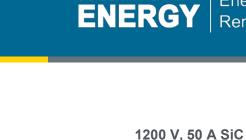
Wide Bandgap (WBG) Performance Characterization

- Test results provided to manufacturers; enables performance improvements in packaging and WGB devices
- Database of test results available to public


High Temperature Inverter

- Characterized interface material
- Modeled thermal performance
- Characterized advanced heat exchanger

Delphi high-temperature inverter



eere.energy.gov

1,200 V, 100 A

MOSFET

U.S. DEPARTMENT OF

Schottky diode

Key Accomplishments

Energy Efficiency & Renewable Energy

Traction Drive System

Integrated Traction Drive (ORNL/UW)

 Six phase, permanent magnet motor with an integrated inverter; high temperature silicon package can operate up to 200°C

Power Electronics

Low Cost Power Module With Improved Power Density (ORNL)

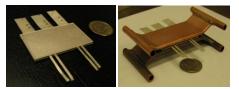
- Double sided planar interconnection and integrated heat exchangers
- Improved manufacturability
- Improved thermal resistance and efficiency

Electric Motors

Scalable, High Performance IPM Motor (GE)

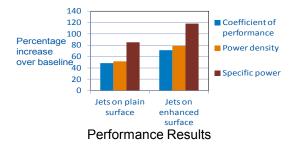
 High energy permanent magnets minimized losses, increased efficiency and power density, and reduced manufacturing costs

Thermal Management


Light-weight, Low-Cost, Design (NREL/UQM Technologies Inc.)

- Liquid jets and enhanced surfaces on copper base plate
- Improved performance, power density and specific power
- Low cost enabled by using water-ethylene glycol and plastic manifold

U.S. DEPARTMENT OF


Integrated Traction Drive

200 A/1,200 V phase-leg power module - double sided planar interconnection (left) & integrated heat exchangers (right)

High Performance IPM Motor

Information Sources

ENERGY Energy Efficiency & Renewable Energy

- FY 2011 Advanced Power Electronics and Electric Motors Annual Progress Report
 - http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/2011 _apeem_report.pdf
- Electrical and Electronics Technical Team Roadmap
 - http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/eett_ roadmap_12-7-10.pdf
- Vehicle Technologies Multi-year Program Plan 2011-2015; Section 2.2.1
 - http://www1.eere.energy.gov/vehiclesandfuels/pdfs/program/vt_m ypp_2011-2015.pdf

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

Susan Rogers Advanced Power Electronics and Electric Motors Susan.Rogers@ee.doe.gov

www.vehicles.energy.gov