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Overview

• Project start date: 2008 Jan
• Project provides fundamental 

research to support DOE/industry 
advanced lean-burn SI engine 
development for alternative fuels.

• Project directions and 
continuation are reviewed 
annually.

• Inadequate understanding of advanced, 
highly boosted, direct-injection stratified-
charge spark-ignition engines:

– Robust (w/o misfires) lean-burn combustion 
technology. 

– Incomplete understanding of the dynamics of 
fuel-air mixture preparation / ignition.

– Ethanol’s lower AFR requires larger injected 
fuel mass, which influences fuel stratification.

• Project funded by DOE/VT.
• FY08 - $630 K.
• FY09 - $600 K.

Timeline

Budget

Barriers

• Project lead: Sandia (M. Sjöberg)
• 15 Industry partners in the Advanced Engine 

Combustion MOU. 
• General Motors.
• HCCI Fundamentals Lab at Sandia (J. Dec).
• LLNL (W. Pitz) & Univ. of Galway (H. Curran).
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Objectives for FY2009
Project goals are to provide the science-base needed to understand:
1. How emerging future fuels will impact the new, highly-efficient DISI

light-duty engines currently being developed.
2. How engine design can be optimized to make the most efficient use of

future fuels.
• Focus for the first years is on ethanol / gasoline blends.

Objectives for FY2009:

A) Build a future fuels lab for advanced lean-burn DISI engines.
• Design an optically-accessible DISI research engine.
• Install and commission the engine in the future fuels lab.

B) Evaluate ethanol for SI and HCCI operation, utilizing HCCI fundamentals lab.
• Determine the autoignition characteristics of ethanol over a range of loads, 

speeds, and intake-pressure boost .
• Evaluate the latest ethanol chemical-kinetics mechanism from LLNL.
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FY2008-2009 Milestones
• Complete the design/modification of the optical head for the 

new light-duty fuels research engine. (September 2008)
• Complete new future fuels research laboratory infrastructure. 

(March 2009)
• Complete assessment of intake boost on ethanol HCCI 

autoignition. (June 2009) 
• Finalize light-duty DISI engine installation to allow initial 

performance testing. (September 2009)
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Approach
Lab and engine build-up: 

• Base the engine lab and engine hardware off existing Sandia engine labs and optical 
engines, and improve to accommodate the unique requirements of advanced DISI engine 
fuels research.

• Collaborate with GM to acquire latest generation single-cylinder research cylinder head. 
– Spray-guided stratified charge SI combustion system.
– Optical access to pent-roof combustion chamber.
– Suitable fuel injectors, and high-energy ignition system.

Research:
• First, conduct performance testing with all-metal engine configuration over wide ranges of 

operating conditions and alternative fuel blends.
– Speed, load, boost, EGR, and stratification level.

• Second, apply optical diagnostics to develop the understanding needed to improve 
operating conditions that show less-than-desired robustness, performance, or efficiency.

Supporting modeling:
• Conduct chemical-kinetics modeling of flame-speed and autoignition for detailed 

knowledge of governing fundamentals.
– Perform validation experiment in HCCI fundamentals lab.

• Develop collaboration with DISI CFD modeling teams.
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Technical Accomplishments
Future fuels DISI lab:

• Finished designing the laboratory room that houses new DISI research engine.
– All room infrastructure has been finalized.

• Designed and installed an engine test stand with excellent vibration isolation. 
– High-performance AC induction motor for controlling engine speed and absorb load.

• Crank case of existing CLR research engine has been modified to 
accommodate new optical setup with extended-piston arrangement.

– Modified balancing shafts and added Tungsten weights to ensure a well-balanced 
single-cylinder engine.

• Completed preliminary design of combined all-metal / optical engine.
– Detailed design and manufacturing of parts is currently in progress. 

Initial fuel evaluation for DISI operation:
• Performed tests in the HCCI lab to assess ethanol and gasoline autoignition 

characteristics (as related to knock and flame speed for SI). 
– Compared results with PRF and other alternative fuel.

• Evaluated latest ethanol chemical-kinetics mechanism from LLNL.
– Engine-speed and intake-boost sensitivity.
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Lab Design
• Designed an engine-test stand based on an assembly of heavy steel 

plates suspended on AirMounts.
– 2700 kg and natural frequency of 2.8 Hz prevent engine vibration from 

reaching sensitive lasers and other measurement devices.
• Improved access to engine by separating main laser table from engine.

– Will use hinged optical bridge to link lasers to optical engine.
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Laboratory Room 
• Laboratory room is now essentially finished.

– Electrical supply, ventilation, cable trays, shelves over engine and laser table.

• High-performance electric motor is installed.
– 200 Nm steady-state, corresponds to

45 bar BMEP for this 0.55 liter engine.

• Variable-frequency drive is installed, 55 kW.
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Engine Balancing
• Single-cylinder engine needs dynamic balancing of reciprocating masses. 
• Redesign the current two counter-rotating balancing shafts to account for extra 

weight of extended optical piston.
• Existing connecting rod allows for up to 2.4 kg to be added to current CLR piston 

for operation up to 2400 rpm.
– Will allow sturdy design of extended piston, for steady-state operation with 100 bar peak pressure.

• Tungsten addition to current balancing shafts can easily provide completely 
balancing of 1st order forces, as is custom.

• Computations show small total engine motion amplitude of 0.008 mm due to 
residual 2nd, 3rd… order forces.

• Tungsten HD17 Alloy was chosen for good machinability.

Original New with Tungsten
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Research Engine Layout

• Base of engine is ready.
• Bore 86mm x Stroke 95mm = 0.55 liter swept volume. 
• Design and manufacturing of upper portion of

engine is in progress.
• Two configurations:
• One all-metal version with metal-ring pack and oil 

cooling of piston (incl. lower cylinder for oil control).
• One optical version with pent-roof windows, piston top 

window, 45 mirror, spacer-ring windows, and 
endoscope access.

• Fuel PLIF, PIV, chemiluminescence imaging.
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Fuel Evaluation for DISI Research
• The first fuels to be examined in the new DISI research engine are 

gasoline and ethanol, and various blends of the two.
• Since engine knock must be avoided when operating with alternative fuels, 

it is valuable to examine the autoignition characteristics of these fuels.
• Consequently, perform experiments in the HCCI fundamentals lab to 

assess gasoline, and especially, ethanol autoignition characteristics over
a wide range of conditions.

– Engine speed (performed to date).
– Intake boost pressure (initial tests performed).
– Fuel/air equivalence ratio – φ (initial tests performed, not shown here).
– Charge temperature (future tests).
– EGR rate (future tests).

• Compare autoignition characteristics of gasoline and ethanol with 
reference fuels.

• Evaluate the fidelity of existing chemical-kinetics mechanisms.
– Can be used for modeling of both knock onset and flame speed.
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Only premixed 
fueling is used 
for these data.

Cummins B
0.98 liter / cyl.

All-metal HCCI Engine 

CR = 14
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Engine-speed Sweep
• Adjust the intake temperature (Tin) to maintain CA50 = 372°CA as engine 

speed is changed. (Pin = 100 kPa, simulating naturally aspirated oper.)
• The ensuing curve reveals a great deal about the autoignition 

characteristics of the fuel.
• In general, Tin < 110°C means that the fuel is exhibiting low-temperature 

heat release (LTHR),
i.e. coolflames.

• The more reactive fuels
(i.e. lower octane number)
show LTHR for higher rpm.

• Ethanol is the only true
single-stage ignition fuel.

– No LTHR even for low Tin
at 300 rpm (not plotted
because no ignition).
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Gasoline vs. Ethanol
• The reactivities of ethanol and gasoline are very similar for RPM > 900.
• Also heat-release rates are very similar

(example for 1500 rpm).
• Ethanol: RON = 107, MON = 89.
• Gasoline:  RON = 91 and MON = 83.
• But octane rating is different. Rpm effect.
• At very low engine speed gasoline

develops LTHR.
– HRR profiles become dissimilar.
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Model Evaluation for Speed-Sweep
• Evaluate latest ethanol mechanism from LLNL / National University of 

Ireland - Galway.
• Courtesy of W. Pitz and H. Curran.
• 55 species and 350 reactions.
• For model evaluation, it is beneficial to compare the BDC temperature required 

to achieve the same start of combustion (SOC) as engine speed changes.
• Identical BDC temperatures at 1200 rpm.
• Slightly larger changes of Tbdc

are required for model.
• Could be caused by too-low

temperature sensitivity of the model.
– Evaluate as a future step.

• Overall, very good agreement.
– No tuning was performed.
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Intake Boost Sweep
• The autoignition of ethanol has very low dependence on intake boost.
• In contrast, a blend of 30% n-heptane, 40% toluene, and 30% iso-octane shows 

strong dependence on boost.
• Happens mostly because the increased pressure triggers onset of LTHR.
• Does not happen for ethanol, which remains a

single-stage ignition fuels for boosted conditions.
– Consistent with proven anti-knock

properties for boosted SI operation.
• Ethanol model shows slightly too low boost sensitivity.

– However, overall very good agreement.
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Future Work FY 2009 – FY 2010
• Continue evaluation of ethanol and gasoline over a wide range of conditions.

– Particularly assess influence of boost, EGR, φ , and fuel-vaporization cooling.
– Evaluate the ethanol chemical-kinetics mechanism with regards to EGR, Tin, and φ. 
– Use model to investigate the influence of EGR, φ , and boost on the laminar flame speed.

• Finalize detailed design of DISI research engine with all-metal and optical 
configurations.

• Complete the fabrication of parts for all-metal configuration.
• Assembly and commission engine to allow initial performance testing.

• Perform experiments to assess DISI engine performance and efficiency, and
the onset of knock as a function of ethanol/gasoline fuel blend and CR.

• Assess the robustness of the stratified spray-guided combustion system as the fuel 
composition and intake-boost pressure change.

– Continuous monitoring for misfire cycles.
• Apply advanced optical diagnostics (including high-speed imaging) to identify

the in-cylinder processes that are responsible for sporadic misfire cycles.
– Focus on the conditions prevailing near the spark gap (fuel concentration and flow field) 

and the ensuing early flame growth.
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Summary
• Good progress have been made to commission a new advanced future fuels 

research engine laboratory.
• Design is nearly complete for an optically-accessible research DISI engine with

all-metal performance-testing capability.
– Spray-guided stratified charge SI combustion system.
– Collaborating with GM on hardware and relevant combustion-chamber geometry.

• The new DISI engine will be installed and commissioned late FY2009.
• Will allow performance testing with all-metal engine configuration over wide ranges 

of operating conditions (including high intake boost) and alternative fuel blends.
• Perform advanced high-speed optical diagnostics of modes of operation that show 

less-than-desired performance or robustness, i.e. unacceptable misfire frequency.

• Have performed initial assessment of autoignition characteristics of ethanol. More 
tests in HCCI Fundamentals lab planned for FY2009.

• The latest ethanol mechanism from LLNL / NUI Galway captures well autoignition 
over ranges of engine speed and intake boost.

– After evaluation of EGR, φ , and Tin sensitivity, use model to investigate conditions 
relevant for new DISI engine, i.e. onset of knock and laminar flame speed.




