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Overview

• Project provides science to support 
industry to develop advanced 
lean/dilute-burn SI engines for
non-petroleum fuels.

• Project directions and continuation 
are reviewed annually.

• Project funded by DOE/VT.
• FY10 - $630 K.
• FY11 - $650 K.

Timeline Budget

Barriers
• Goal is 45% peak efficiency.
• Lack of fundamental knowledge of 

advanced engine combustion regimes.
• How to achieve both high combustion

robustness and fuel efficiency for SI 
engines using alternative fuels:

1. Lean, unthrottled DISI with spray-
guided combustion.

2. Well-mixed charge and high boost.

Partners / Collaborators
• PI: Sandia (M. Sjöberg)
• 15 Industry partners in the Advanced 

Engine Combustion MOU. 
• General Motors.
• D.L. Reuss (formerly at GM).
• HCCI Lab at Sandia.
• LLNL & NUI Galway, Mechanisms.
• UW Madison - KIVA modeling.
• UNSW Australia – Multi-zone 

Modeling.
• Sandia – Biomass Conversion Team.
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Objectives - Relevance
Project goals are to provide the science-base needed to understand:

• How emerging future fuels will impact the combustion systems of new
highly-efficient DISI light-duty engines currently being developed.

• How the fuels and combustion systems can be tailored to each other to
maximize thermal efficiency.

• Initial focus is on E85 and gasoline. Expand to other fuel blends (e.g. E20)
and components (e.g. butanol and iso-pentanol) based on industry interest.

DISI with spray-guided stratified charge combustion system
– Plagued by occasional misfires. 
– Depend highly on fuel-air mixture preparation/ignition/flame development.
– These processes are strongly affected by fuel properties and required fuel mass.

• Study performance for both well-mixed stoichiometric and lean operation,
and for lean stratified operation, and examine the effects of fuel properties.

• Develop high-speed optical diagnostics to be used to understand how to mitigate 
potential barriers (e.g. ensure robust combustion, and avoid superknock).

• Perform HCCI experiments to exploit the unique characteristics of ethanol.
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• Combine metal- and optical-engine experiments and modeling to develop a broad 
understanding of the impact of fuel properties on DISI combustion processes.

• First, conduct performance testing with all-metal engine configuration over wide 
ranges of operating conditions and alternative fuel blends.

– Speed, load, intake pressure, EGR, and stratification level. Quantify engine operation 
and develop combustion statistics.

• Second, apply a combination of optical and conventional diagnostics to develop 
the understanding needed to mitigate barriers to high efficiency and robustness.

– Include full spectrum of phenomena; from intake flow to development of flame, and 
endgas autoignition (knock).

Supporting modeling:
• Conduct chemical-kinetics modeling of flame-speed and autoignition for detailed 

knowledge of governing fundamentals.
– Perform validation experiment in HCCI lab and compare with literature.

• Collaborate with CFD modeling teams.

Approach
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Technical Accomplishments
• Commissioned engine and initialized all-metal performance testing.
• Selected valve timings to provide low residuals and somewhat late IVC

(mild Miller cycle).
• Performed an initial comparative study of E85 and gasoline for both well-

mixed stoichiometric and lean operation, and for lean stratified operation.
• Characterized the robustness of the lean stratified spray-guided combustion 

system for gasoline and E85.
• Examined the direct effect of vaporization cooling on the thermal efficiency 

for E85.
• Optical engine experiments:

– Installed high-speed fuel-PLIF laser and set up laser-sheet forming optics.
– Installed high-speed PIV laser and confirmed its performance.

• Used CHEMKIN to investigate the influence of in-cylinder conditions on the 
laminar flame speed for strong and weak cycles.

• Demonstrated the use of partial fuel stratification with ethanol to smooth 
HCCI HRR by vaporization-cooling-induced thermal stratification.
(In HCCI lab at Sandia.)
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• Piston bowl design is based on recommendations from GM.
–Modified with cut-out for viewing into bowl.
–Production-engine metal-piston rings.

Engine Configuration

High-speed 
355 nm laser 

for PLIF.

Oil and 
air jets.

Lower oil-
control 

cylinder.

Upper 
cooled 

cylinder.

High-energy
spark coil.
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Engine Breathing
• Bore = 86.0 mm, Stroke = 95.1 mm, 0.55 liter swept volume, CR = 12.
• Selected valve timings to avoid valve overlap (not needed for low engine speeds.)
• Provide low residual level (A) and somewhat late IVC (very mild Miller cycle).
• Volumetric efficiency remains high even for low Pin.
• Expanding exhaust-port/runner design provides low-amplitude pressure oscillation

during exhaust stroke (B), as predicted by GT-Power.
• A and B minimize cyclic variability of residual mass.

– Residuals are now a relatively small factor when evaluating cyclic variations.
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Research Engine Layout
• Two configurations of drop-down single-cylinder engine.
• All-metal: Metal-ring pack and air/oil-jet cooling of piston (with lower cylinder for oil control). 

Water-cooled exhaust for continuous operation.
• Optical: Pent-roof windows, piston bowl window, 45° mirror, and quartz cylinder.
• Identical combustion chamber geometry for both configurations, so no discrepancy between 

performance testing and optical tests.
• 8-hole injector with 60° included angle ⇒ 22° between each pair of spray center lines.

Spark gap is in between two sprays.
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Parameter Space Parameter Current Study
CR 12
Piston Bowl ∅ 46 mm
Intake Flow Tumble
Valve Timings For Minimal 

Residual Level
Injector &
Spray Targeting

Bosch 8 x 60°C 
Straddling Spark

Pinj 170 bar
Tcoolant 60°C
Tin 26°C
Engine Speed 1000 rpm
IMEPn 370 kPa
Pexhaust 100 kPa
Intake Pressure 44 – 95 kPa
End of Injection -294 to -25°CA
Spark Timing -36 to -14°CA
Spark Energy 6 – 116 mJ
EGR / [O2]in 21 – 17% O2

Fuel Type E85, Gasoline

• The parameter space is huge for performance 
testing.

– Grouped as hardware, static parameters
& operating variables.

• Performed initial comparative study of E85 
and gasoline.

– BMEP = 3 bar, so need to maintain IMEPn ≈
370 kPa (all 4 strokes) for all comb. modes.

• Allows assessing the basic characteristics of 
combustion at one low load condition.

– One piece of the big picture.
– Low load is relevant for stratified operation.
– Study thermal efficiency and cyclic variability.

• Acquired data for 500 cycles per steady-state 
operating point.

– Cylinder, intake, exhaust, & fuel pressure.
– Exhaust emissions and smoke.

• All presented well-mixed cases have spark 
timings for max IMEPn (≈ MBT-timing).
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Gasoline Results
• Thermal efficiency (TE) improves with lean 

and lean-stratified operation.
• Decreased pumping work is important factor.
• Higher thermodynamic cycle efficiency for 

compression/expansion is largest factor.
– Lower in-cylinder heat transfer and less 

exhaust heat (due to higher γ).
• TE for stratified would ⇑ with later CA50, but 

spark timing is not independent of EOI. 
(Examine in two slides.)
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Gasoline Cyclic Variability
• Stoichiometric operation is very stable.

– Partly thanks to low residual level
~5.7% by mass at this condition.

• Increased variability at lean efficiency limit.
– Long burn duration,

with outlier cycles.

• Stratified combustion is fairly stable.
– But 1 of 500 cycles misfires.
– Not caused

by injector
malfunction.

– Need optical
diagnostics to
find cause.
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Stratified Spark-Timing Window
• Stable stratified combustion requires careful 

match of the spark timing to the injection event.

• Retarding the spark to phase CA50 closer to 
TDC does not work.

• Moving EOI and Spark in tandem improves TE, 
but higher cyclic variability and more misfires.

• Instead EGR can be used to phase CA50 later.
–Study with E85.
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E85 Results
• TE improvement with well-mixed lean is nearly identical to gasoline.
• Without EGR, TE improvement with stratified oper. is only +15%, vs. +24% for gasoline.
• CA50 is very early, partly due to faster combustion.

– Fuel jets have 55% higher kinetic energy, and HRR is strongly influenced by mixing rates.
• Apply EGR (N2 dilution) to phase CA50 later. Reduces NO as well. Find best trade-off.
• Lower cyclic variability would improve thermal efficiency. (Examine in next slide).
• TE improvement is still less than for gasoline. (Examine in three slides).
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Stratified E85 Cyclic Variability
• Cyclic variability increases with more EGR.
• Higher TE would be realized if all cycles produce high IMEP.

– Need to understand cyclic variability before suggesting ways to achieve this.
• Spark-energy sweep shows that the problem is not caused by failure to ignite,

as long as high spark energy is used.
• For high spark energy, most low-IMEP

cycles have long burn durations.
• Suggests that low IMEP is produced

by slow and incomplete flame propagation.
• Examine if SL is relevant for explaining

two extreme cycles.
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Understanding Slow Burns
• The laminar flame speed (SL) is one of the major 

parameters that determine successful flame 
development.

• Flame modeling using
CHEMKIN-PRO at
engine-relevant conditions.

• Use Ethanol to
represent E85.

• Flame speed increases rapidly with temperature.
• Stoichiometric mixture has most robust flame.
• CA-resolved SL shows that too-lean mixture

is a potential cause of slow burn.
• Weak cycle has lower gas temperatures

ahead of the flame.
– Contributes to slow burn rate of too-lean mixtures.

• Need to apply optical diagnostics for complete 
understanding of slow burns for these conditions.
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TE Improvement Comparison
1. Even with improved combustion stability, TE 

improvement with stratified combustion would 
still be lower with E85 (19.8 vs. 24.0%).

2. Stoichiometric E85 operation has 3% higher TE.
• Both explained by strong vap. cooling with E85.
• For early injection, lower peak-combustion

temperatures provide higher work-extraction 
efficiency. (Higher γ.)

• E85 vaporization using valuable exergy near 
TDC hurts the thermal efficiency.
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Ethanol HCCI Experiments
• Ethanol vaporization cooling is 5x greater than for iso-octane.
• Ethanol is a true single-stage ignition fuel.

– Autoignition timing is sensitive
to temperature.

• Vaporization cooling increases with φ,
so CA10 retards strongly for DI.

• Use Partial Fuel Stratification (PFS) for
strong reduction of peak HRR and PRR.
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• General Motors.
– Hardware, discussion partner of results, and for development of diagnostics.

• D.L. Reuss (formerly at GM, now at UM).
– Development of optical diagnostics for high-speed PIV and PLIF.

• 15 Industry partners in the Advanced Engine Combustion MOU.
– Biannual meetings with 10 OEMs and 5 energy companies.

• Sandia – Biomass Conversion Team.
– Discussions of potential biofuels and compatibility with engine combustion.

• Sandia HCCI Lab (J.E. Dec).
– Reference HCCI autoignition data and PFS operation with ethanol.

• UNSW – Australia (E. Hawkes).
– Multi-zone modeling of ethanol SCCI.

• UW-M (J. Brakora, R. Reitz).
– KIVA-CFD.

• LLNL (W. Pitz) & Univ. of Galway (H. Curran).
– Chemical-kinetics mechanisms.

Collaborations / Interactions
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Future Work FY 2011 – FY 2012
• Make hardware alterations to allow deactivation of one valve to create swirl flow, 

and contrast with current tumble-flow results. Add intake air heater.

• Expand operating range with gasoline and E85 to include higher speeds and 
boosted operation. Study mid-range blends (~E40) for selected operating points.

• Discuss results with industry partners and decide on most relevant operating 
points to study optically.

• Install quartz windows for piston-bowl and pent-roof access.

• Finish the installation of laser-sheet imaging for high-speed PLIF and PIV.

• Design and install full-quartz cylinder for better optical access.
• Apply optical diagnostics to identify the in-cylinder processes that are 

responsible for sporadic misfire cycles and partial burns.
–Correlate variations in the flame growth with fuel concentration and flow field near 

spark, and with large-scale intake and compression flow field.

• Continue using CHEMKIN to investigate combustion fundamentals.

• Study fuel effects on both regular knock and low-speed preignition/superknock 
under highly boosted conditions.
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Summary
• The new lab is contributing to the science-base for the impact of alternative 

fuel blends on advanced SI engine combustion.

• Using gasoline, lean stratified operation provides significant improvement of 
thermal efficiency.

• Improvements of TE are less with E85.
• Strong vaporization cooling for fuel injection near TDC hurts efficiency.
• Heat of vaporization is important factor that needs to be considered when 

pursuing future fuels.
• Cycle-to-cycle variations can be significant for low-NOx operation.

– More stable combustion would provide higher thermal efficiency.

• Development of high-speed optical diagnostics is nearly finished.
– Apply to understand cyclic variability and propose ways to make more stable.

• Engine companies are encouraged to discuss the current project with us.
– Welcome suggestions for both operating strategies and fuel blends.

• For HCCI, partial fuel stratification with ethanol offers potential to reduce peak 
HRR and lower PRR.

– Vaporization cooling enhances the naturally occurring thermal stratification.
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Technical Back-Up Slides
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• While DISI was being built, performed experiments in Dec’s HCCI lab to 
assess ethanol autoignition characteristics and compared with gasoline, 
iso-octane and other fuels.

• Covered wide range of conditions:
– Engine speed.
– Intake boost pressure.
– Fuel/air equivalence ratio – φ.
– Charge temperature.
– EGR and constituents.
– Vaporization cooling.
– Partial fuel stratification using ethanol.

SAE Paper 2010-01-0338

Combustion Symposium 2010

HCCI Experiments

JSAE Paper for Kyoto meeting

• Ethanol is a true single-stage fuel with minimal early heat release.
• Autoignition timing is sensitive to changes of temperature.
• Ethanol has very strong vaporization cooling.
• Partial-fuel stratification with ethanol therefore has potential to achieve 

an extended burn duration.
• Higher φ regions ignite last as those have more vaporization cooling.
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Cummins B
0.98 liter / cyl.

All-metal HCCI Engine

CR = 14

Combine 
Premixed and

DI Fueling
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Vaporization Cooling
• Vaporization-cooling effects can be particularly strong for ethanol.

• Test 190 proof ethanol (95% ethanol, 5% water). “Worst-case scenario”.
• Potential gas cooling is >5x that of iso-Octane.
• Observed cooling matches theory well.
• Maximum (observable) cooling effect occurs for SOI ~2/3 of intake stroke.
• Minimizes heat transfer from piston, so heat for vap. comes mostly from air.

0

5

10

15

20

25

Fuel per Cycle
[mg]

Heat of Vap.
(10x) [MJ/kg]

Heat of Vap.
[J]

Potential Gas
Cooling [K]

iso-Octane
Ethanol

φ  = 0.24
0.75 g air/cycle

+79%

+202%

+441%

+441%

140
145
150
155
160
165
170
175
180
185

0 20 40 60 80 100 120 140 160 180 200 220
Start of Direct Injection [°CA]

B
D

C
 T

em
pe

ra
tu

re
 [°

C
]

95% Ethanol + 5% H2O, CR = 14
iso-Octane, CR = 18

IV
C

P
re

m
ix

ed

P
re

m
ix

ed

Theory



25

φ – Sensitivity / PFS
• Using a Fire-19/1 technique, both Tresiduals and Twall are held constant.
• Quantify the combined effects of vap. cooling, γ and fuel-chemistry.
• φ -sensitivity becomes stronger than for premixed operation.
• SOI = 40 CA. Later SOI ⇒ more cooling

and higher φ -sensitivity.

• Partial Fuel Stratification (PFS) combines
1. Premixing of most fuel with
2. Late injection with remainder of fuel
to achieve a staged combustion event.
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PRR and HRR
• Lowest PRR is observed for SOI = 270 – 280°CA.

– Decreases by 39%, from 9.8 to 6.0 bar/°CA (for 40%DI).
• Peak HRR is reduced, and more early HR as leanest zones ignite first.
• Shows that the thermal stratification has been enhanced.
• Response of PRR to SOI is complex.
• Fuel-vaporization cooling can

counteract natural thermal
stratification due to heat transfer.
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