

2011 DOE Vehicle Technologies Program Review

<u>Advanced Combustion Concepts - Enabling Systems and Solutions (ACCESS)</u> for High Efficiency Light Duty Vehicles

> Arlington, Virginia May 13th, 2011

Hakan Yilmaz Advanced Systems Engineering Gasoline Systems, Robert Bosch LLC

> Contract: DE-EE0003533 Project ID: ACE066

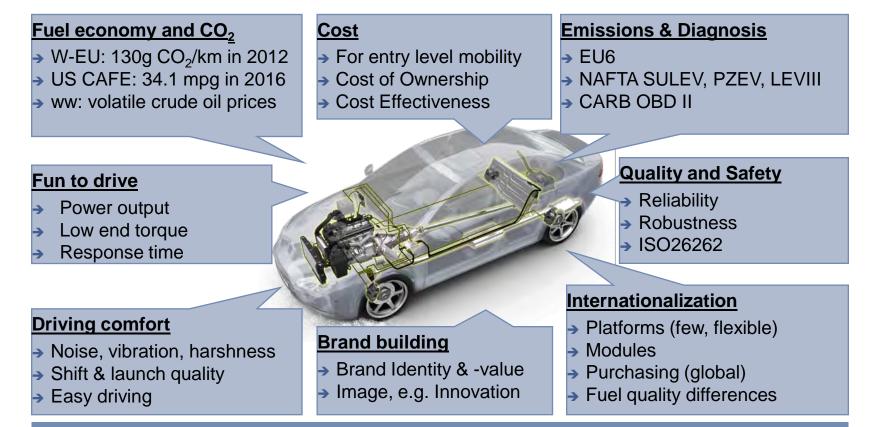
"This presentation does not include any confidential material"

2011 DOE Merit Review – ACCESS

- Project Overview
- Relevance
- Approach
- Collaboration and Coordination
- Accomplishments and Future Work
- Summary

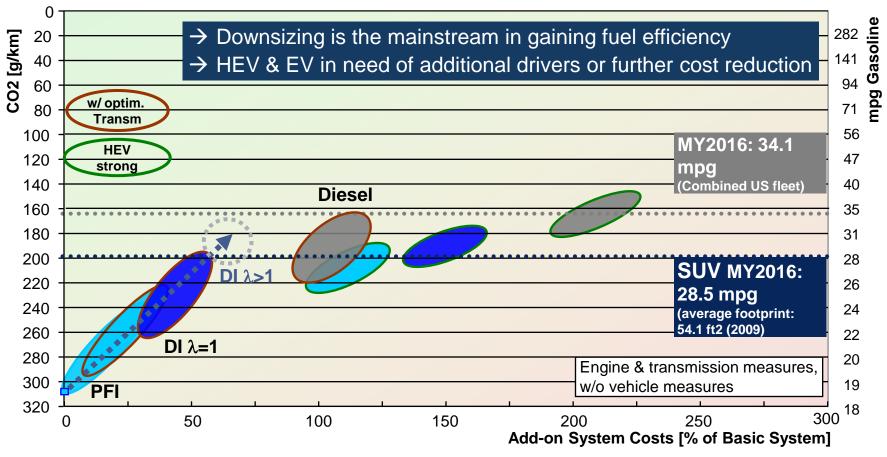
2011 DOE Merit Review – ACCESS – Overview

Budget	Barriers
 \$24,556,737 – Total Project Budget \$11,953,784 – DOE Funding \$12,602,954 – Partner Funding \$9,987,412 – Phase I \$7,441,808 – Phase II \$7,127,518 – Phase III 	 Barriers Fuel efficiency as key market driver Stringent emission requirements System cost of advanced combustion Targets 30% fuel efficiency improvement SULEV emissions capability Commercially viable system solution
Timeline	Partners
Phase 1 (1.5 yrs) ConceptPhase 2 (1 yr) DevelopmentPhase 3 (1.5 yrs) ApplicationFundamental ResearchTechnology DevelopmentImplementation and Vehicle Demo 03/01/2012- 02/28/20129/30/2010 02/28/201203/01/2012- 02/28/201203/01/2013- 09/29/2014	 US Department of Energy Robert Bosch LLC AVL University of Michigan, Ann Arbor Stanford University Emitec



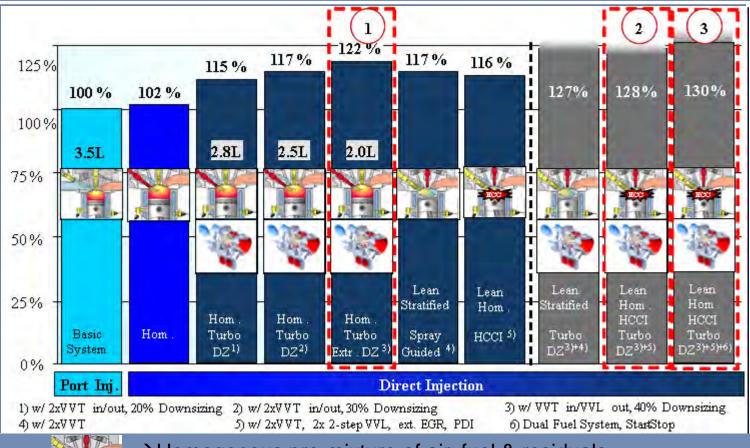
- Project Overview
- Relevance
- Approach
- Collaboration and Coordination
- Accomplishments and Future Work
- Summary

Major Market Drivers of Automotive Powertrain World Wide



 \rightarrow Costs and fuel economy currently are worldwide the most important market drivers. Emissions and diagnosis are mandatory requirements.

Bridging the Technology Gap



Basic system: SUV class (2300 kg); 4.0 I (8 cyl.) PFI; λ=1; CO₂ 308 g/km

Advanced Combustion Concept – Homogenous Charge Compression Ignition (HCCI)

→Homogenous pre-mixture of air, fuel & residuals
 →Controlled auto-ignition and flameless combustion

Overall Project Objectives

- Baseline Powertrain: 3.6L V6, PFI, 6 Speed
- Target Powertrain: 2.0L I4, DI, Turbo, 6 Speed –Multi Mode Combustion SI/HCCI
- 30% Fuel Economy Improvement Compared to Baseline
- SULEV Emissions Capability
- By mid 2014 commercially viable, production feasible, system solution

Annual Objectives - DOE kick off Oct 1, 2010 - March 2011

- Establish team structure and project management processes
- Validate boosted HCCI concept with Experimental and Simulation data
- Complete Prototype I engine design and initiate HW procurement
- Initiate Modeling, Systems and Controls development activities

Phase 2 Go/No Go Decision

- Modeling, simulation, or test results of selected technologies indicate technical feasibility of achieving project goals.
- The cost benefit analysis shows that the project is on a specific path to deliver a commercially viable engine and vehicle system.

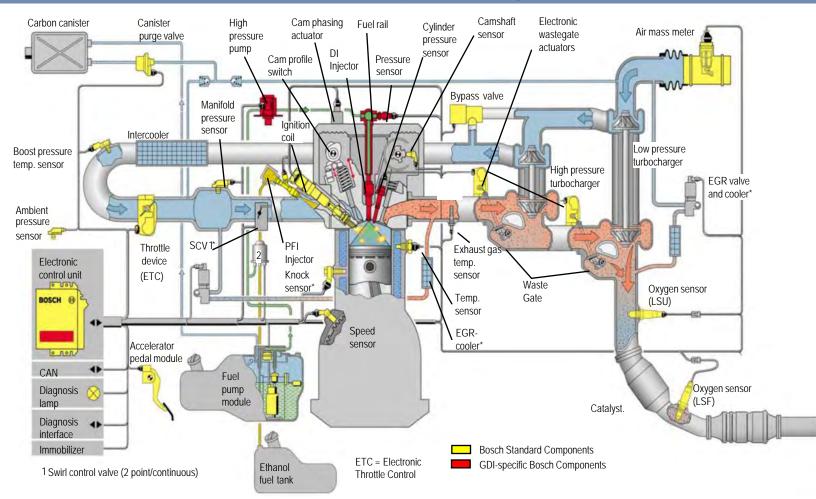
Project Timeline

	Phase 1 Concept 2010 2011	Phase 2 Development 2012	Phase 3 Application 2013 2014
Engine Design •EMS design & build Bosch •Engine design & build AVL	•EMS System Concept and Lay -out •Engine / Vehicle Simulations •HW Design and Procurement •Prototype 1 Engine Builds	•Final HW Proposal •Final System Layout •Prototype 2 Builds	• Engine Upgrades & Maintenance
•Combustion Modeling AVL / U •Combustion Development AVL / U	• Physics Based Combustion Models • 1cyl / 4cyl Base Combustion Data • System Lay -out and Sizing	•HCCI/SI Combustion •Combustion Mode Parameterization	•Combustion Model Updates
•Combustion System •Combustion System Bosch •Combustion Simulations Bosch/	• CFD based Combustion Models / UofM • 1cyl Combustion Investigations Stanford • Multi Mode Combustion Concepts	•CFD Model Updates •Multi Fuel Concepts •Dual Fuel System •1cyl Investigations	 Advanced Combustion Investigation Advanced Bio -Fuel Concepts Extreme High Compression Ratios
•Control Oriented Models Bosch •Control Concepts Bosch	• Control Concept – Sub-Systems	Model Validation Experimental Control Concepts Subsystem Application	Final Control Concepts Vehicle Level Controls Calibration of Controls Parameters
Emissions Development •Emission System Emited •Emission Components Emited	•3-Way SULEV Catalyst Design : / Bosch•Emission Simulations	∙3-Way Catalyst Build ∙Lean NoX Trap Design	Lean After Treatment Concept Vehicle level Emission Development Drive-cycle Emission Tests
Vehicle Development•Vehicle IntegrationBosch•System ApplicationBosch	venicle Communications	 • Vehicle Integration • SI Mode Calibration 	Vehicle Level Development HCCI Mode Calibration Chassis Dynamometer Drive Cycle Testing and Demo

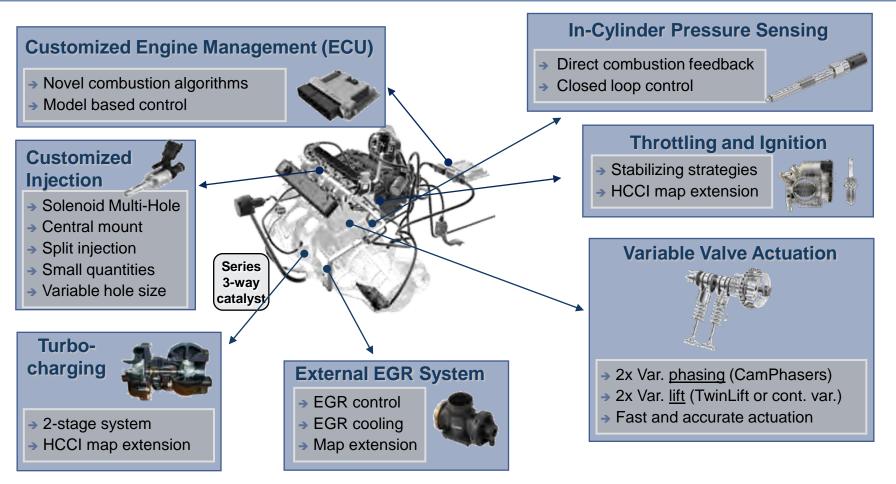
- Project Overview
- Relevance
- Approach
- Collaboration and Coordination
- Accomplishments and Future Work
- Summary

Multi Mode Combustion System

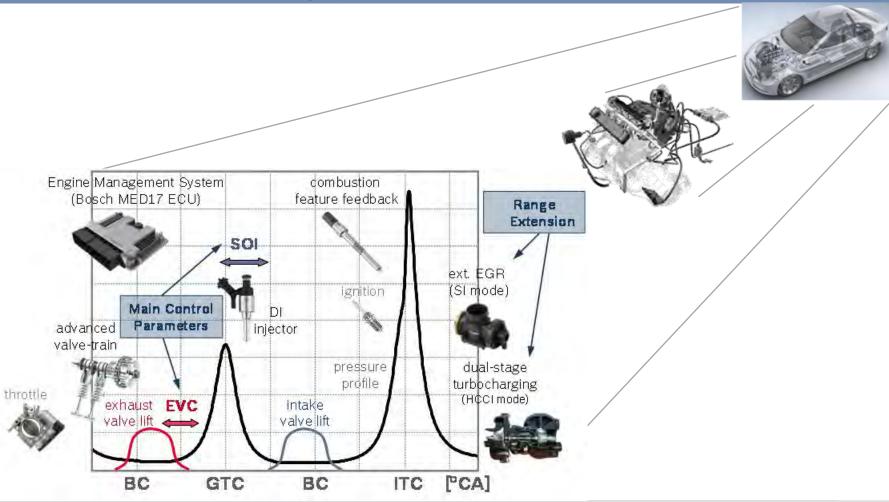
- Spark Ignited (SI) Combustion with High Compression Ratio and High Boost assisted with cooled external Exhaust Gas Recirculation (EGR)
- Homogenous Charge Compression Ignition (HCCI) with Boost, and Fueling strategies for operation range extension


Enabling System Configuration

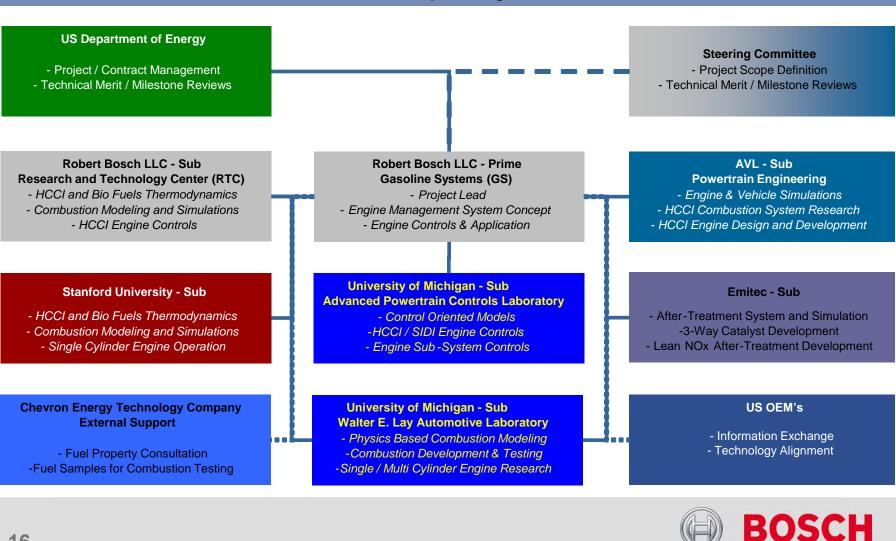
- Port assisted Direction Injection (PDI) Dual injection system for combining the benefits of Port Fuel Injection (PFI) and Direct Injection (DI), and enabling Dual Fuel System approach for high compression ratios and extreme downsizing on boosted engines
- Multi-Hole Direct Injection with Individual Nozzle Geometry design for improved mixture preparation and combustion efficiency
- Start-Stop and Thermal Management Systems to eliminate fuel consumption at idling conditions and enhance engine warm-up behavior


Multi Mode Combustion System Configuration

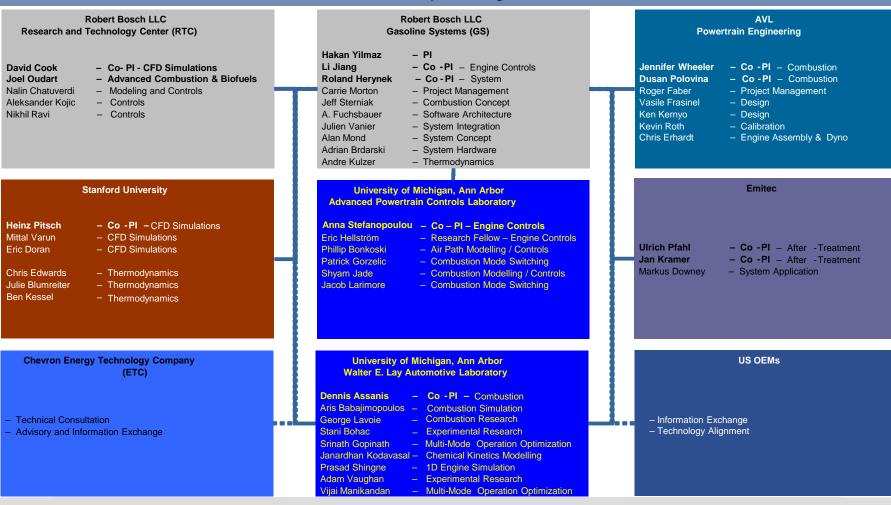
Multi Mode Combustion System Configuration



Enabling System for Multi Mode Combustion



- Project Overview
- Relevance
- Approach
- Collaboration and Coordination
- Accomplishments and Future Work
- Summary



ACCESS Project Organization

ACCESS Project Organization

Consortium Partner Roles and Interactions

→ Effective coordination of information and data flow based on roles and responsibilities

- Project Overview
- Relevance
- Approach
- Collaboration and Coordination
- Accomplishments and Future Work
- Summary

TANFORD EITHEC

BOSCH

Competence and Project Management

Establish Team Structure

- Project Teaming Agreement
 Full team in place, roles defined 14 PhD Students
 4 Faculty Members, 3 Post Docs 15+ Industry Staff
- HCCI Center of Competency Transfer from Bosch Germany to Bosch North America
- Comprehensive training for all students and team members by the research team from Bosch, Germany

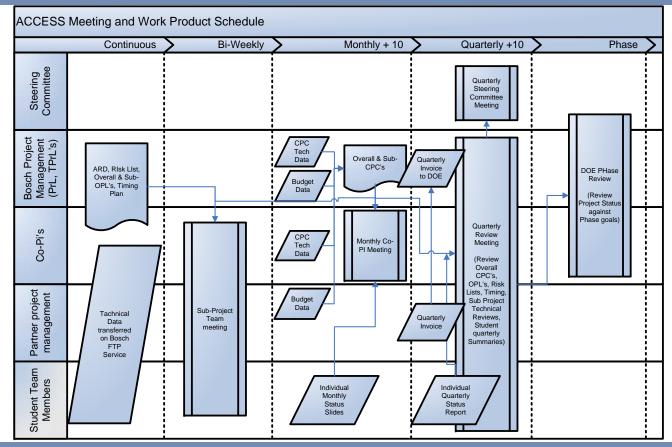
Project Management Plan

- Communication plans
- President level Industry
 Executive steering committee
 established

3 quarterly review meetings

- Monthly Cockpit Charts
- Risk Management Plan
- Reporting templates & data collection standards in use
- Web based filing structure and data exchange to enhance collaboration

→ Project team and management structure are in place and fully active!


35+ Researchers and Staff from Industry and Academia!

Consortium Meeting and Reporting

 \rightarrow Overall alignment and control of project status and target achievements

 \rightarrow Comprehensive project management to minimize administrative burden on researchers

Engine Test Cells at University Partners

- Single-cylinder research engine lab with Fully Flexible Valve Actuation (FFVA) at Stanford operational
- Multi-cylinder engine lab at University of Michigan operational with support of Bosch
- State-of-the-art multi-cylinder transient engine dynamometer ordered; will be commissioned at University of Michigan in August 2011
- Resident Bosch engineers at both universities

Stanford University

University of Michigan

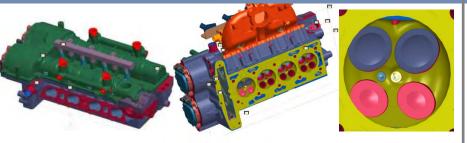
Engine Test Cells at Industry Partners

- HCCI combustion development and parameterization at AVL test cell
- SI development and calibration at Bosch test cell
- All experimental set-ups will have same Engine HW and Engine Management System
- Open data sharing among partners and test cells

AVL test cell

Bosch test cell

 \rightarrow Industry support enables University researchers to focus on innovation

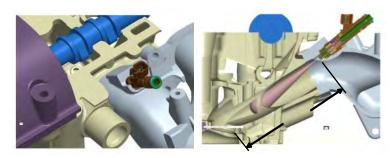


Prototype 1 Engine Design (AVL, Bosch)

Target Multi Mode Combustion Engine will be based on GM Ecotec 2.0 L DI Turbo platform

- All Base Engine HW design and improvements for target engine configuration in progress, lead by AVL
- All Engine Management System design and improvements for target system configuration in progress, lead by Bosch
- All Aftertreatment System design and improvements for emission concept in progress, lead by Emitec

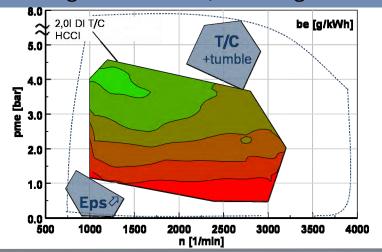
Cylinder Head with Central Mount Injection

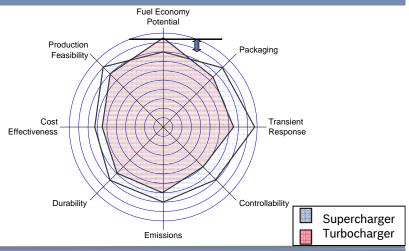

Cylinder Head Design for Central Mount Direct Injection and Variable Valve Actuation is completed

Combustion and Spray Optimization

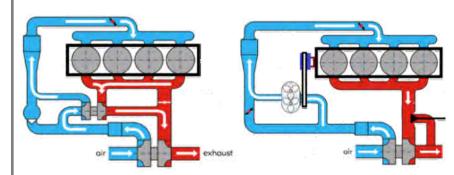
Combustion chamber, piston crown and injection spray designs for Prototype 1 engine are completed

Dual Injection Design DI + PFI


Dual Injection System design with DI + PFI is completed

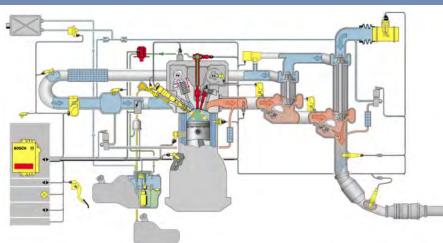

HCCI Range Extension w/ Boosting

Turbo Charger vs. Super Charger



Accomplishments

- Simulations of dual-stage boosting in GT Power completed
- Experimental data from Boosted HCCI Mule engine was used for simulation validation
- Comprehensive analysis of boosting system options was performed


T/c + T/c vs. S/c + T/c Configuration

Overview – Combustion System

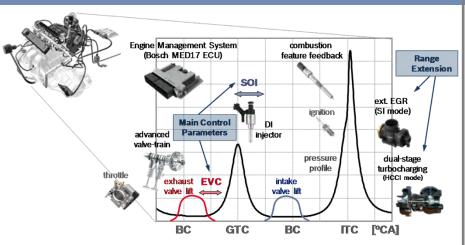
• High fidelity combustion model for fundamental multi-mode combustion

- Engine HW design and procurement
- Transient dynamometer experiments
- After-treatment simulation
- Vehicle simulation and verification

Accomplishments

Future Work

- Engine design for Prototype level 1 completed
- Boosted HCCI experiment is setup for data collection at University of Michigan
- Vehicle + Engine simulation in progress
- Transient dynamometer ordered for University
 of Michigan


- Build Prototype I engines
- Combustion development and validation of Prototype I engine on transient dynamometer
- Parameterization of multi mode combustion
- Prototype level 2 updates and proof of combustion concept for vehicle readiness

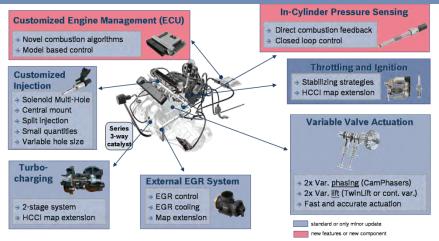
Future Work

Overview – Control System

- Simulation / Experiment based system dynamics and control sensitivity analysis
- Model-based combustion / air path control with cylinder pressure sensing feedback
- Engine-in-the-Loop (EIL) control algorithm validation via rapid prototyping techniques

Accomplishments

- Control-oriented HCCI combustion model validated for low/part load and light boost
- Control-oriented air path model established for a single-stage turbocharged base configuration
- Dynamic analysis of the engine in progress
- Sub-system control development in progress


• Validate charge estimation algorithm for target engine platform

- Validate sub-system / component controls
- Improve controls for HCCI & SI combustion and dual-stage turbo charging system
- Finalize control strategy architecture for a multi-mode combustion engine

Overview - Software Architecture

Accomplishments

- Bosch Motronic engine control platform to be used for Engine and Vehicle level development with all sub-system and system level functions
- Engine Control Unit with integrated algorithms for multi mode combustion for production feasible proof of concept
- Common ECU platform for all partners' research

Future Work

- Prototype Engine Control Unit (ECU) to be used by the project is built with additional drivers
- Integrated ECU software for Mule engine, including base HCCI control algorithms
- Rapid-Prototyping hardware acquired and installed on test cell

- Integration of new algorithms into ECU software to fulfill all requirements of Prototype I engine
 - •New actuators: dual-stage boost system, variable valve lift (VVL) and electric variable valve timing (eVVT)

•Multi-mode combustion: HCCI and SI

Approach

Overview – Fundamental Combustion & Fuels	
	 Single cylinder r Fully Flexible Va Univ.)
	Advanced comb
	• rCFD RANS to it

Accomplishments

- •Engine test bench operational with DI + PFI Injection, Fully Flexible VVA, Boost (<3000rpm)
- •Baseline Steady state HCCI map in progress
- •rCFD RANS Combustion model implemented, and first gas exchange simulation completed
- •rCFD LES framework defined and flow bench simulation SCRE cyl. head in progress

- Single cylinder research engine (SCRE) with Fully Flexible Variable Valve actuators (Stanford Univ.)
- Advanced combustion concept with bio fuel
- rCFD RANS to investigate extreme high and low load HCCI
- Development of rCFD LES method for engine simulation in SI and HCCI modes

Future Work

- Investigate low load HCCI w/ multiple injection
- Integration of a cooled compressed external EGR system and Prototype 1 cyl. head
- Validation of rCFD RANS and LES simulations using experimental and numerical data
- Implementation of rCFD LES Combustion model

2011 DOE Merit Review – ACCESS – Summary

- Project Overview
- Relevance
- Approach
- Collaboration and Coordination
- Accomplishments and Future Work
- Summary

2011 DOE Merit Review – ACCESS – Summary

- 30% FE↑
- SULEV Capable
- Commercially Viable

Base Engine Engine Hardware Management System Combustion Hardware Software Control Strategy Architecture **Bio-Fuel** Strategy **Emissions** Combustion System **Team Competence / Project Management**

31

Target

2011 DOE Merit Review – ACCESS

Questions?

