Advanced Cathode Material Development for PHEV Lithium Ion Batteries

Jamie Gardner Junwei Jiang

3M Electronics Materials Marketing Division

June 8, 2010

Project ID # ES006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- start: 4/06/2009
- finish: 9/1/2010
- 67% complete

Budget

- Total project funding
- USABC share: \$1,137,726
- Contractor share: \$1,137,726
- Funding received in FY09: \$185,264
- Funding for FY10 : \$902,521

Barriers

Cost, Capacity, Rate and Thermal Control.

Targets

- Increase capacity 5-10%
- Reduce Cost >10%
- Maintain thermal stability and cycle life

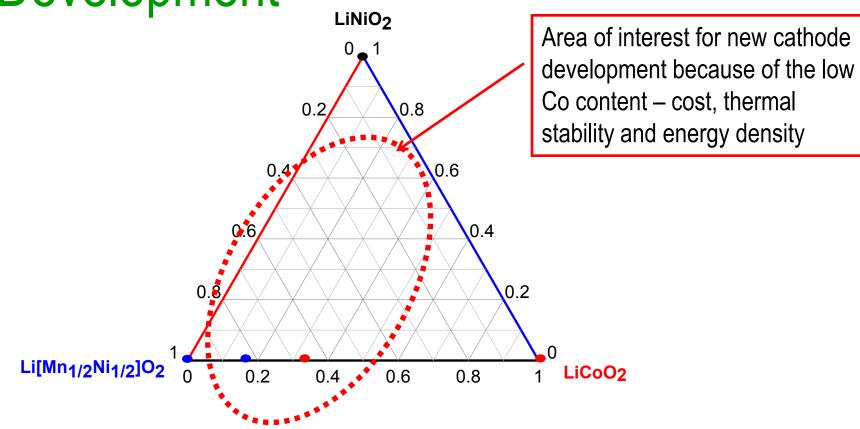
Partners

- Major automakers
- Major cell makers

Project Objectives

To design an advanced cathode materials with the following performance improvement compared to MNC 111 for PHEV applications:

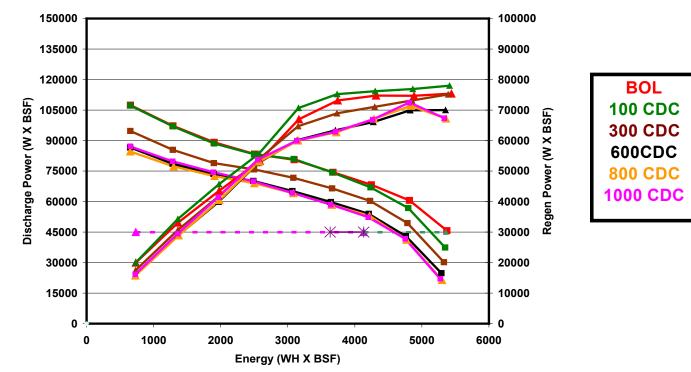
- 5 ~ 10% higher capacity improvement (mAh/g)
- ~ 15% lower raw material cost
- Comparable or higher thermal stability
- Comparable or higher cycle life
- Achieving these objectives will result in a new commercial cathode material with cost and performance advantages for automotive applications



Milestones

- Optimization of benchmark cell design
- Collection of benchmark cell data
- Identification of advanced cathode material meeting targets
- Development of large scale production process for advanced cathode material
 - Optimization of cell design with advanced cathodes
 - Build and evaluate 18650 Size cells with advanced cathode materials
 - Assemble complete data package on advanced cells

Approach to Cathode Development


 Prepared over 50 samples and using statistics modeling tool to identify the most promising two MNC compositions

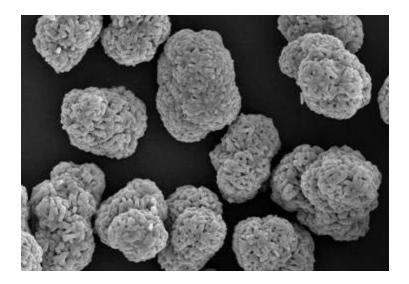
Advanced Cathode Material Development for PHEV Lithium Ior Benchmark Cell Optimization and Performance

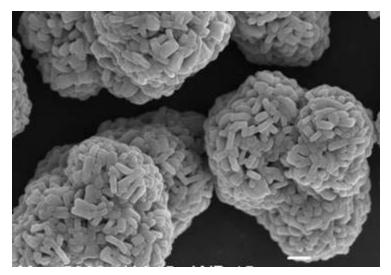
Cell design optimized

Electrolyte system optimized

Benchmark 18650 Cell Design Successfully Optimized
 After 1,000 CD Cycles, > 11% Energy Available

Accomplishments Progress / Gap Analysis


Requirement	BC618 Benchmark	Target	Adv. MNC 1	Adv. MNC 2
Capacity C/10 (mAh/g)	156	>165	168	168
Capacity C/2 (mAh/g)	145	> 155	157	158
Thermal Stability DSC (°C)	315	≥ 315	321	<mark>315</mark>
Cycle Life (CD Cycling)	> 2000	≥ 2000	TBD	TBD
Cost (relative)	100%	≤ 85%	81%	72%


Both Advanced MNC Candidates Meet Primary Objectives
Large Scale Performance Validation Underway

Accomplishments Large Scale Manufacturing

- Large Scale Process Conditions Developed
 - Both Advanced MNC Compositions Optimized in Large Scale Reactor
 - Multiple Variables Evaluated and Optimized
- Produced > 25 kg of each Composition

Proposed Future Work

- Optimize Electrode Coatings of Candidate Materials
- Build 18650 Size Cells with Advanced Cathode Materials
- Generate Initial Performance Data
- Downselect to One Advanced Cathode Composition Based on Data Generation and Perspective Customer feedback
- Complete Full Cell Performance Data Package

Summary

- Improved the CD cycle life time of the benchmark cell with MNC 111 from 300 cycles to over 2000 cycles.
- Identified 2 final MNC candidates that meet project objectives.
 - 5-10% Increased Capacity
 - 10% Reduced Cost
- Established large scale production process for advanced MNC materials
- Produced > 25 kg of each advanced MNC material to support remaining phase of project

All Project Goals Met or Exceeded to Date

Advanced Negative Electrode Materials for PHEV Lithium Ion Batteries

Jamie Gardner M.N. Obrovac

3M Electronics Materials Marketing Division June 8, 2010 Project ID # ES006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- start: 06/23/2009
- finish: 06/22/2012
- 33% complete

Budget

- Total project funding
- DOE share: \$1,348,093
- Contractor share: \$1,348,093
- Funding received in FY09: \$266,214
- Funding for FY10 : \$720,000

Barriers

E. Weight, volume and thermal control.

Targets

- increase cell energy density by 20%, significantly reducing system volume
- Partners
 - Major automakers
 - Major cell makers
 - Universities
 - National labs

Objectives

 Develop practical negative electrode materials for PHEV Li-ion batteries with the following properties:

- > 2X specific energy as graphite (> 650 mAh/g)
- > 2X volumetric capacity as graphite (> 1500 mAh/cc)
- < 20% fade / 300 cycles</p>
- abuse tolerance better or equivalent to graphite
- rate performance better or equivalent to graphite
- Achieving these objectives is projected to result in cells with a 20% reduction in volume compared to those using conventional graphite anode materials.

Milestones

FY09: Alloy and Cell Optimization

Specific Capacity Volumetric Capacity Cycle Life Thermal Stability Rate Performance Manufacturing Viability Electrolyte Development > 650 mAh/g (exeeds 2X graphite)
> 1500 mAh/cc (exeeds 2X graphite)
< 20% fade / 300 cycles
exceeds graphite
2C/0.2C > 90%
exceeds kg scale
develop rapid screening method

FY10/11: Optimization for PHEV Applications

Optimize Abuse Tolerance Optimize PHEV Cycling Protocol Performance Optimize High/Low Temperature Cycling Performance

Approach

- Iow RM cost Si-based alloys
- Iow cost / high volume manufacturing
- active/inactive, nanocrystalline/amorphous alloy microstructure (good cycle life)
- low surface area (good thermal stability)
- 18650 cells used as primary test vehicle
- achieve performance targets by:
 - alloy materials optimization
 - coating formulation optimization
 - electrolyte optimization
 - cell design optimization

Technical Accomplishments and Progress

Alloy Material	Project Start L-19725	End of FY09 L-19725 L-20772
Manufacturing Method	meltspinning	new low cost / high volume method
Cycle Life	40% fade / 250 cycles	<20% fade / 300 cycles
Electrolyte Development	no rapid test method	successful rapid test method

 Significant progress has been made in materials, manufacturing, cell design and electrolyte development

Accomplishments Large Scale Manufacturing

- All project manufacturing goals exceeded
- L-17925 Alloy
 - meltspinning method
 - target volumes exceeded
- L-20772 Alloy
 - proprietary manufacturing method
 - low cost / high volume / quicker to scale
 - target volumes exceeded
 - plan to increase scale this year

Accomplishments / Gap Analysis and Negative Electrode Materials for PHEV Lithium Ion Batteries All Year 1 Targets Exceeded

Properties Requirements	Conventional	Target	L-19725	L-20772
Composition	Graphite		Si-Al-TM-RE-Sn	Si Based
Surface Area (m²/g)	1		1	4.5
True Density (g/cc)	2.26		4.2	4.0
Specific Capacity (mAh/g)	320	> 650	800	860
Volumetric Capacity (mAh/cc)	660	> 1500	1580	1604
Thermal Stability	ref	≥ ref	> ref	TBD
Cycle Life (% fade at 300 cycles)	ref	≤ 20%	19%	<mark>27%</mark>
Rate Performance (2C/0.2C)	>93%	>90%	>93%	>93%
Manufacturing Viability	ref	Large Scale	Confirmed	Confirmed

L-19725 meets/exceeds all targets

L-20772 alloy meets exceeds capacity targets

Proposed Future Work

- All Phase 2 targets met
- Excellent position to start Phase 3: Optimization PHEV Performance Characteristics
 - coating formulation optimization
 - electrolyte formulation optimization
 - cell design optimization for PHEV
 - power, cycle life, high/low temperature performance
 - abuse tolerance optimization

Summary

- Significant progress made during FY09. Many large technical barriers overcome.
- High performance alloy materials, manufacturing methods, coating formulations, electrolyte formulations developed
- > 2X volumetric and gravimetric capacity of graphite achieved while maintaining good cycle life
- Low cost raw materials made using volume production methods developed
- Anticipate 15-20% increase in cell level volumetric capacity (verified internally)

All project goals exceeded for FY09

