Advanced Cathode Material Development for PHEV Lithium Ion Batteries

Jamie Gardner, Jagat Singh, Jehwon Choi

3M Electronics Materials Marketing Division May 10, 2011

Project ID # ES006

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- start: 4/06/2009
- finish: 4/1/2011
- 100% complete

Budget

- Total project funding
- USABC share: \$1,137,726
- Contractor share: \$1,137,726
- Funding received in FY09: \$185,264
- Funding received in FY10 : \$674,349
- Funding to Feb in FY11: \$208,477

Barriers

Cost, Capacity, Rate and Thermal Control.

Targets

- Increase capacity 5-10%
- Reduce Cost >10%
- Maintain thermal stability and cycle life
- Partners
 - Major automakers
 - DOE Labs

Project Objective

To design an advanced cathode materials with the following performance improvement compared to MNC 111 for PHEV applications:

- 5 ~ 10% higher capacity improvement (mAh/g)
- ~ 15% lower raw material cost
- Comparable or higher thermal stability
- Comparable or higher cycle life

Achieving Objectives will Result in a New Cathode Material with Cost and Performance Advantages for Vehicle Applications

Milestones

Jan 2010

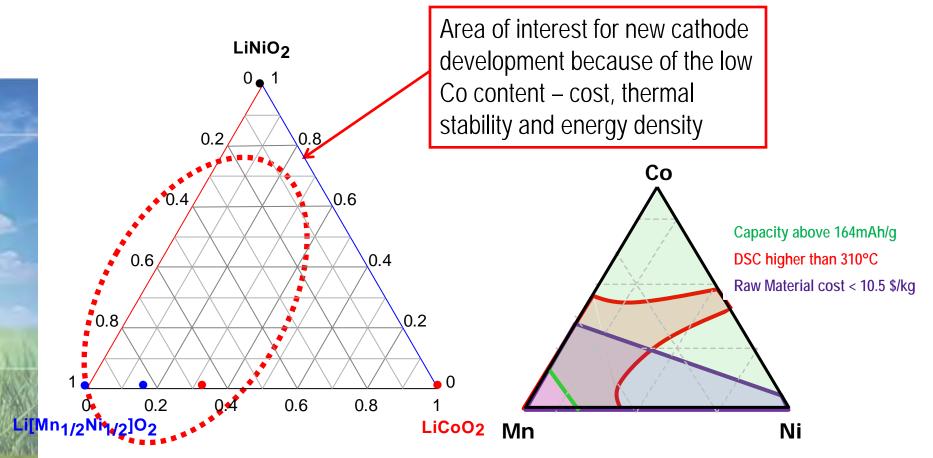
Phase I – Identify Material Candidate

- Lab scale material R&D two compositions meetings program objectives
- Optimized & validated 18650 test vehicle (≥ 1250 cycles)

Phase II – Material Scale Up

- Optimize, validate & verify process parameters on pilot plant scale
- Pilot plant production & validation of final cathode material

Feb 2011

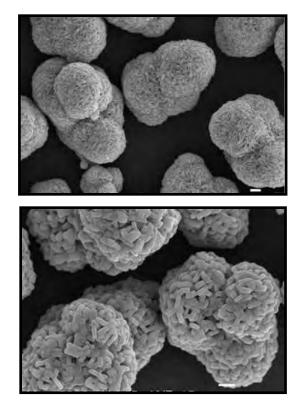

July 2010

Phase III – Material Validation in 18650 Cells

- Build and evaluate 18650 cells with advanced cathode materials
- 18650 data package generation & performance validation
- 18650 shipment to DOE labs for performance verification

Approach – Cathode Material Development

Mixture Design and Statistical Modeling used to Identify most Promising Compositions



ES006 Advanced Cathode Material Development for PHEV Lithium Ion Batteries

Approach – Process Optimization

Process Optimization

- Reactor Temperature
- Reactor pH
- Rate of material addition
- Reaction Time
- Residence Time
- Sintering condition
- Lithiation

Hydroxide Oxide

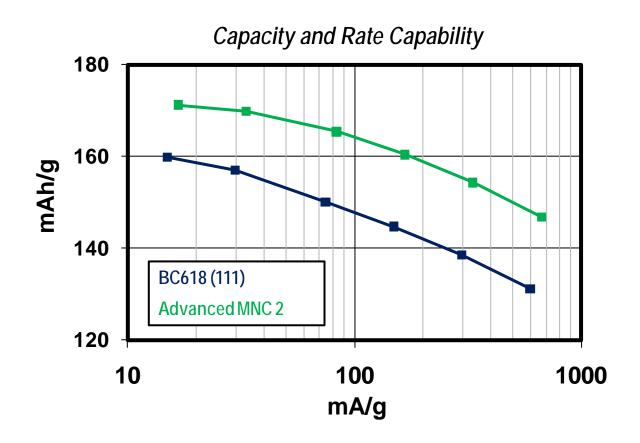
Best Composition and Process Conditions Identified from over 50 Samples

Approach – Performance Validation

- Lab Scale Material / Coin Cell Evaluation
- Pilot Scale Material / 18650 Cell Evaluation
 - Comparative Cell Design
 - Electrolyte Additives
 - Electrode capacity (mAh/cm²)
- Evaluation Methods
 - 18650 Abuse Testing

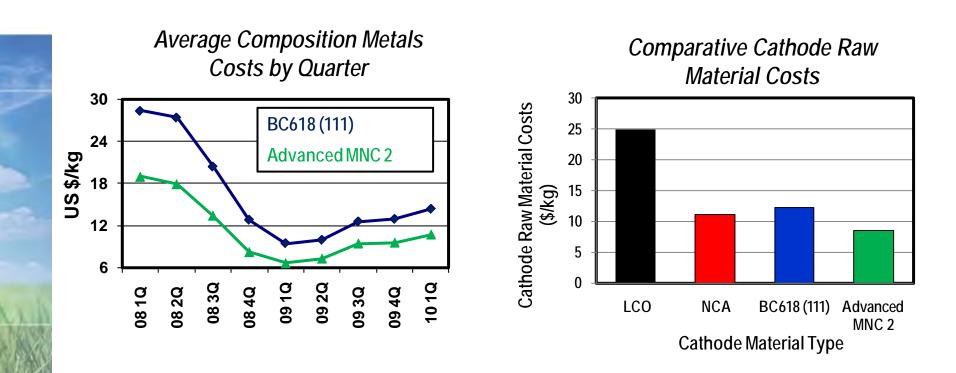
	Baseline	Advanced Material	
Cathode	3M BC618 (MNC 111)	Advanced MNC 2	
Anode	Graphite	Graphite	
Separator	Celgard 2325	Celgard 2325	
Electrolyte	1 M LiPF ₆	1 M LiPF ₆	
	EC/EMC/DMC	EC/EMC/DMC	
Additive	A and B	A and B	
Cell	18650-Size	18650-Size	

- Thermal Ramp, Hot Block, Nail Penetration Tests
- 18650 evaluation in accordance with "Battery Test Manual for Plug –In Hybrid electric Vehicle"
 - Static Capacity Test, HPPC, Self Discharge Test, Charge Depleting Cycle Life Test & Cold Crank Test

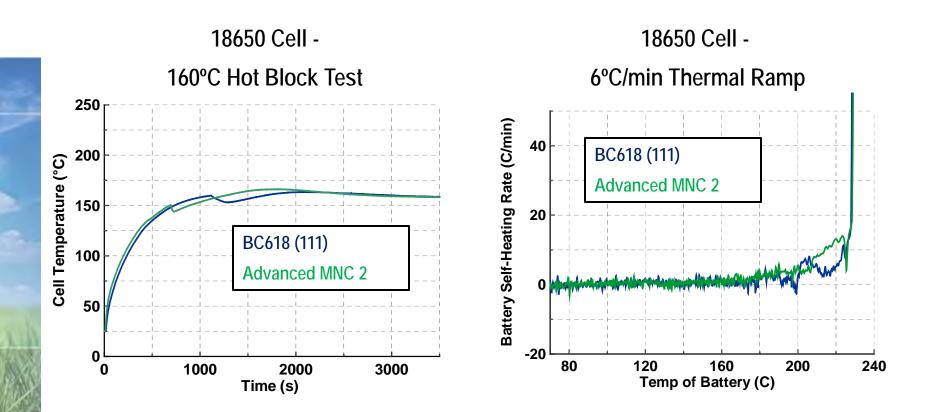

Accomplishment – Lab Scale Material Identification

Requirement	BC618 (111)	Target	Adv. MNC 1	Adv. MNC 2
Capacity C/10 (mAh/g)	156	>172	173	174
Capacity C/2 (mAh/g)	145	> 161	164	163
Thermal Stability DSC (°C)	315	≥ 315	321	315
Materials Cost (relative)	100%	≤85%	81%	72%

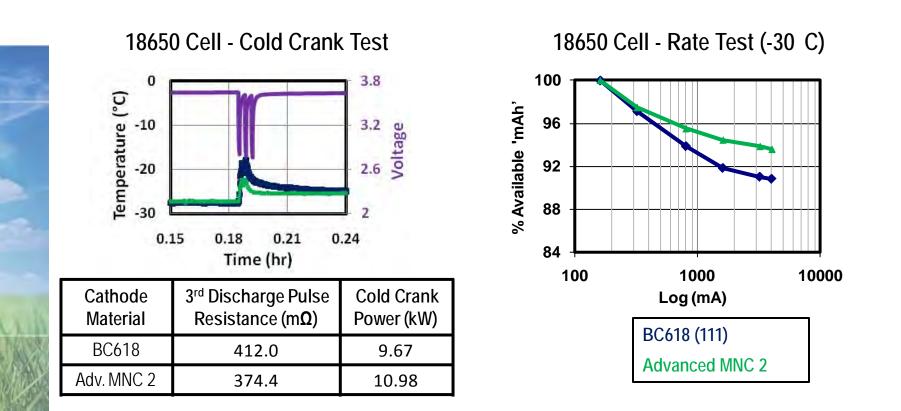
2 Advanced MNC Candidates Meet Primary Objectives. Material Down Selected on Storage Capacity Retention & Cost


Accomplishment - Material Capacity Improvement

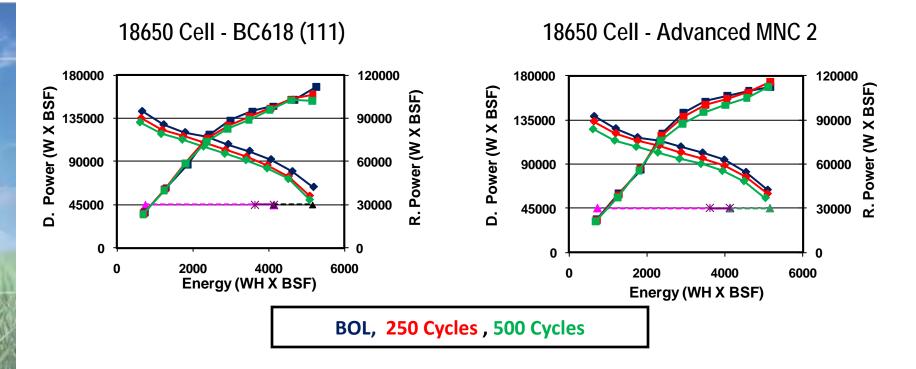
Advanced MNC 2 Demonstrates ~8% Increase in Capacity


Accomplishment - Material Cost Reduction

Advanced MNC 2 Offers >20% Lower Raw Material Cost


Accomplishment - Thermal Stability

Advanced MNC 2 Demonstrates Equivalent Thermal Stability


Accomplishment - Low Temperature Performance

Advanced MNC 2 Demonstrates Better Performance at Low Temp

Accomplishment – Cycle Life Performance

Advanced Material 2 Demonstrates Equivalent Cycle Life Performance after 500 Cycles

Accomplishment – Gap Analysis

Requirement	BC618 (111)	Target	Adv. MNC 2
Capacity C/10 at 30°C (mAh/g)	156	≥172	174
Capacity 2C at 30°C (mAh/g)	135	≥ 149	150
Irreversible Capacity at 30°C	10%	≤15%	9
Raw material Cost	100%	≤ 85%	72%
DSC Peak Max (°C)	317	≥317±3	320
18650 Thermal Ramp Runaway (°C)	227	≥227 <i>±</i> 2	229
18650 Cold Cranking Power at -30°C, 2 sec, 3 rd Pulse (kW)	10	≥7	11
18650 Maximum Self Discharge (Wh/day)	15	≤50	15
18650 Charge Depleting Cycle Life (Cycles)	500*	≥ 500	500 *
18650 Available Energy for CD Mode, 500 Cycles, (kWh)	4.1	≥3.4	4.1
18650 Peak Discharge Pulse Power, 10sec, 500 Cycles, (kW)	101	≥45	100

* Testing Meets Goal. Continued Cycling in Progress

Collaboration & Co-ordination with Other Institutions

- 18650 shipment to DOE labs
 - 10 cells with BC618 (111) material
 - 10 cells with advanced MNC 2
- Electrochemical PHEV tests at ANL
 - Static capacity tests, HPPC, self discharge test, cold crank test & cycle life test
- Abuse tests at SNL
 - Thermal & nail penetration test

Proposed Future Work

 Continue charge depleting cycle life study in 18650 cells till End Of Life conditions are reached

- Cell analysis after EOL is reached
- Collaborate with Argonne National and Sandia National Laboratories to complete performance verification in 18650 cells

Summary

- Developed advanced cathode material meeting all project objectives.
 - 5-10% Increased Capacity
 - 10% Reduced Cost
 - Equivalent Thermal stability
 - Cycle Life > 500 cycles
- Optimized pilot scale material production (≥ 25kg)
- Demonstrated advanced cathode material performance in 18650 cells
- Prepared and shipped 40, 18650 cells to Sandia & Argon National Laboratories for performance verification

All Project Goals Met or Exceeded

