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Simultaneous high efficiency with low emissions requires precise control of the 
combustion process 

Charge must end up in this region after 
combustion is complete  

LTC creates reacting mixtures in-cylinder that 
avoid soot and NOx formation … 

…while at the same time avoid CO and 
UHC emissions. 

Slide adapted from DOE presentation, Gurpreet Singh et al. 



3 Managed by UT-Battelle 
 for the U.S. Department of Energy 

 

 

How does Reactivity Controlled Compression Ignition (RCCI) combustion 
compare to other approaches? 

• Advanced combustion approaches in general converging on technologies for 
maximum control of the combustion process. 

‒ High compression ratio 

‒ High dilution 

‒ In-cylinder direct injection 

‒ Etc. 

• RCCI makes use of GASOLINE + DIESEL to add a new and powerful dimension to 
control in-cylinder charge conditions. 

Gasoline Diesel 

PFI 
Stoich 

GDI 

Gasoline 

HCCI 

Lean 

GDI 
PPC RCCI 

Diesel 

HCCI 
PCCI DI 

Reference:  Adapted from Briggs et al., 2011 DOE Annual Merit Review. 

Fuel 
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Combination of gasoline + diesel provides robust control of the combustion path 

• Multi-fuel approach makes use of desirable properties of 
both gasoline and diesel. 

‒ Gasoline well suited for high loads (PFI). 

‒ Diesel fuel well suited for low loads (DI). 

• In-cylinder fuel blending in combination with in-cylinder 
charge conditions controls the combustion process. 

‒ Gasoline port fuel injection with diesel direct injection. 

‒ Direct injection strategy spans single and multiple events 
depending on in-cylinder conditions. 

‒ Charge preparation is also very important. 

• Simulation and single-cylinder experiments demonstrate 
potential of this approach for very high efficiency with low 
emissions. 

 

References:  Kokjohn et al. (SAE 2009-01-2647) 
and Hanson et al. (SAE 2010-01-0864) for more 
details on dual-fuel concept. 
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Next step is to transition RCCI combustion to production viable hardware to better 
understand real-world fuel economy potential 

Brake (shaft) efficiency 

• Hardware limitations 

• Engine-system controls 

• Instability mechanisms 

• Cylinder imbalances 

• Aftertreatment integration 

• Health impacts 

• Auxiliary losses 

 

Drive cycle efficiency 

• Drive system 

• Fuel mix 

• Drive cycle mismatch 

• Vehicle system 
management 

Gross indicated efficiency 

• Fundamental combustion 

• Simulated boundary 
conditions 
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Experimental setup for multi-cylinder RCCI combustion 

• RCCI engine based on 2007 GM 1.9-L multi-cylinder diesel engine. 

‒ Dual-fuel system with PFI injectors for gasoline 

‒ OEM diesel fuel system 

‒ OEM and optimized pistons 

‒ OEM variable geometry turbocharger 

‒ Expanded EGR heat rejection and control 

• Full pass DRIVVEN control system 

‒ Full control of diesel & gasoline fuel systems 

‒ Cylinder-to-cylinder balancing capability 

‒ Next-cycle feedback control capability 

 

Modified Intake Manifold 
with PFI Injectors 

RCCI Optimized (left) and 
OEM (right) pistons 

TDC 

Diesel DI 

Gasoline PFI 

Reference: Curran et al. , “In-Cylinder Fuel Blending 
of Gasoline/Diesel for Improved Efficiency and Lowest 
Possible Emissions on a Multi-Cylinder Light-Duty 
Diesel Engine”, SAE Technical Paper Series 2010-01-
2206 (2010) – for more details on RCCI setup. 
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New piston design based on KIVA optimization at University of Wisconsin 

• UW design  

‒ Based on heavy-duty RCCI piston  

‒ Reducing surface area primary consideration 

‒ Best HC emissions and Efficiency  

‒ Compromise for high and low loads 

• New design expectations 

‒ Reduced heat transfer losses 

‒ Lower HC and CO 

‒ Higher load operation for RCCI 

• New design experimental observations 

‒ Different injection strategies necessary to 
better match different mixing characteristics 

‒ HC, CO, and BTE similar for both designs 

‒ Crevice to be addressed in next iteration 

‒ Some load expansion possible with new design 
due to lower CR 

 

Modified RCCI Piston Stock GM 1.9 L piston 

CR = 15.1:1 CR = 17.5:1 

Reference:  Abstract accepted:  Hanson et al. 
2012 SAE World Congress - 12PFL-0950  
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RCCI operation demonstrated for majority of LD drive-cycle 

• Exploration of engine parameters, hardware, and fuel chemistries. 
‒ Gasoline/diesel ratio, dilution, charge temperature, swirl, boost, etc. 
‒ DI injection strategy. 
‒ CDC and RCCI-optimized piston designs. 
‒ Conventional and bio-renewable fuels. 

• Detailed characterization of emissions and performance. 
‒ HC speciation, PM characterization, thermodynamic loss analysis, instability mechanism 

characterization, etc. 

• Estimation of LD drive-cycle fuel economy and emissions. 
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Self-imposed boundaries and challenges to load expansion 

CO < 5000 pm 

EGR required at low loads 
to maintain suitable 
air/fuel ratio and charge 
temperature. Poor turbocharger performance limits low-

load performance at higher speeds. 

No identified 
limitations for pushing 
engine speed further. 

MPR < 10 bar/deg 

 

 

  

 

  

 E20 + ULSD 

 E85 + ULSD 

 UTG96 + ULSD 
EGR controls MPR but may adversely impact BTE due to EGR 
heat rejection and turbo-machinery limitations. 

Ethanol-gasoline blends enable higher load operation with 
reduced or zero EGR. 
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Example comparison of RCCI vs conventional diesel combustion (CDC) 

 CDC RCCI 

Gasoline ratio NA 88% 

Boost (bar)  1.58 1.22 

EGR Rate (%)  15.3 0 

Diesel SOI ( BTDC) 7 65 

BTE (%) 36.4 39.0 

ITENET (%) 41.7 43.4 

ITEGROSS (%) 44.5 44.8 

NOx (ppm)  417 53 

HC (ppm)  140 3207 

CO (ppm)  140 1099 

FSN (-)  1.51 0.01 

COV IMEP (%)  2.26 1.58 

COV MB50 (%)  3.56 14.3 

Exhaust Temp (C)  370 334 

2600 rpm, 6.9 bar BMEP 
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COV MB50 (%)  3.56 14.3 

Exhaust Temp (C)  370 334 

Example comparison of RCCI vs conventional diesel combustion (CDC) 

 

 

• Very low NOx, PM with 
increase in HC, CO 

• Acceptable COV IMEP.  High COV MB50 
could be control challenge 

• Boost limited by turbo-machinery 

 
• Lower exhaust temperature challenge 

for HC/CO oxidation catalysts 

 

 
• Gross ITE similar for two approaches. 
• Net ITE higher for RCCI  reduced 

pumping and heat losses with zero EGR. 

2600 rpm, 6.9 bar BMEP 
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Major engine parameters used for controlling RCCI combustion process 
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Current RCCI operation includes most of LD drive-cycle (black symbols) 

• Data shown for certification diesel fuel (ULSD) and gasoline (UTG96) 

• Load expansion challenges are under investigation. 
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Engine-out NOx and soot emissions significantly reduced for RCCI combustion 
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Soot emissions (not shown) less than 0.05 FSN for all RCCI conditions.  
Smoke number not sufficient to understand PM characteristics. 

CDC RCCI 
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RCCI PM found to be very different from CDC and PCCI 

• PM filter images and size distribution data suggested high organic content  in PM from RCCI. 

• DOC reduces RCCI PM mass significantly. 

RCCI 

DOC 

 

 

Engine Out 

Post DOC 

PM filter 
samples at 
Engine Out 
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PCCI 420ºC 

RCCI 250ºC 

DOC effective for RCCI PM 
even though exhaust 
temperature lower 
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A wide range of PM data has been collected and is undergoing analysis 

Scanning Mobility Particle 
Sizer (SMPS) 

Engine Exhaust Particle 
Sizer (EEPS) 

Steady-State 

Number-Size Distributions 

Transient 

Morphology 

Transmission Electron Microscopy 

Mass 

Tapered Element 
Oscillating 

Microbalance 
(TEOM) 

Mettler Microbalance 

Organic Fraction 

Organic to 
Elemental Carbon 
Ratio 

Microwave Reactor Extraction               
Organic Speciation 

Micro-tunnel 
Dilution system 
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Engine-out HC and CO emissions are high and more in-line with gasoline applications 
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Low exhaust temperatures will make oxidation of HC and CO more difficult 
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HC speciation and aftertreatment paths are under investigation. 
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HC speciation also ongoing with extensive samples collected in recent weeks 

C1-C4 species 

 

FTIR 

Light HC species 

(Preconcentrator, GC/MS 
speciation) 

Canisters 
Selective capture of carbonyl 
species 

(HPLC, UV, ESI/MS 
separation/speciation) 

DNPH 

Selective capture of semi-
volatiles C10-C18 

(GC/MS speciation) 

Empore 

Micro-tunnel 
Dilution system 
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Drive-cycle estimations show efficiency potential and emissions benefits/challenges  

• Comparisons with PCCI and RCCI. 

• Higher efficiency for RCCI for most modal 
conditions. 

• Higher HC and CO for RCCI for all conditions. 

• E85 showed reduced PM, HC, and CO emissions. 

Point Speed / Load 
Weight 
Factor 

Description 

1 1500 rpm / 1.0 bar 400 Catalyst transition temperature 

2 1500 rpm / 2.6 bar 600 Low speed cruise 

3 2000 rpm / 2.0 bar 200 
Low speed cruise with slight 
acceleration 

4 2300 rpm / 4.2 bar 200 Moderate acceleration 

Sufficient data is now available to perform full vehicle simulations with Autonomie. 
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RCCI Combustion Takeaways 

• Meets or exceeds diesel-like efficiencies with very low NOx and PM emissions. 

• HC and CO emissions similar level to modern gasoline engine but with added challenge of very low 
exhaust temperatures (i.e., CO/HC oxidation more difficult). 

• Very robust to different piston geometries, operating conditions, and transients – additional DOF 
from gasoline/diesel mix. 

• Ethanol-gasoline blends enable higher load operation with reduced or zero EGR. 

• EGR path to higher load has control, heat rejection, and turbo-machinery challenges. 

‒ Dilution important to manage maximum pressure rise rate for higher load operation. 

‒ Higher heat rejection capacity and better turbo-charger matching critical to preserve dilution benefits. 
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Next Steps 

• Vehicle level simulations of RCCI based on extensive 
RCCI combustion map 

• Hardware modifications 

‒ Low pressure EGR system 

‒ Re-designed pistons with focus on crevice 

• Emissions characterization and aftertreatment 
matching 

‒ Detailed gaseous and PM characterization. 

‒ Supports model development. 

• Control challenges 

‒ Continued investigation of transient operation. 

‒ Characterization and control of cyclic/cylinder 
dispersion instability mechanisms. 

• Fuel effects including bio-renewable gasoline and 
diesel fuels. 

UW will be installing an RCCI engine in a 
series-hybrid vehicle to showcase the 

efficiency and emissions potential of this 
combustion strategy. 
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Questions? 
Robert M. Wagner 
Fuels, Engines, and Emissions Research Center 
865-946-1239 
wagnerrm@ornl.gov 

Scott Curran 
Fuels, Engines, and Emissions Research Center 
865-202-9674 
curransj@ornl.gov 

Reed Hanson 
University of Wisconsin 
rmhanson2@wisc.edu 

Related DEER Presentations 

• Monday, 3:30 pm:  Kokjohn, “In-cylinder 
mechanisms of PCI heat-release rate control 
by fuel reactivity stratification” 

• Monday, P-04:  Dempsey, “Characterization 
of dual-fuel reactivity controlled 
compression ignition (RCCI) using hydrated 
ethanol and diesel fuel” 

• Wednesday, 9:30 am:  Splitter, “Effect of 
compression ratio and piston geometry on 
RCCI load limit” 

mailto:wagnerrm@ornl.gov
mailto:curransj@ornl.gov
mailto:rmhanson2@wisc.edu


25 Managed by UT-Battelle 
 for the U.S. Department of Energy 

Extra Slides 
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RCCI achieves diesel-like or better BTE across speed-load range 

• Piston geometry effects are 
compensated with injection 
strategy. 

‒ OEM pistons:  mostly single-pulse 
injection schemes are sufficient. 

‒ RCCI pistons:  requires dual-pulse 
injection for most conditions. 

• Lower CR of RCCI pistons allowed 
for higher load operation. 

Modified RCCI pistons installed 
in GM 1.9-L diesel engine 

Multiple speeds for each load condition. 
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HC and CO emissions higher than diesel and more in-line with gasoline engines 

• HC and CO emissions mostly insensitive to piston bowl geometry (this was a surprise). 

• Possibly due to crevice effects – same for both piston designs. 

Multiple speeds for each load condition. 
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