

Dish Stirling High Performance Thermal Storage

Sandia National Laboratories

PCM development and selection

Andraka

APPROACH

Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000

PROJECT OBJECTIVES

Goal:

 Demonstrate the feasibility of significant thermal storage for dish Stirling systems to leverage their existing high performance to greater capacity Demonstrate key components of a latent storage and transport system enabling on-dish storage with low exergy losses Provide a technology path to a 25kW_e system with 6 hours of storage <u>Innovation</u>: Leverage high performance heat pipes to support feasible system layout Develop and test high temperature, high performance PCM storage Optimize storage configuration for cost and exergy performance Latent storage <i>and</i> transport matches Stirling cycle isothermal input¹ 	 Literature searches and modeling to develop candidate eutectics Sample fabrication and characterization to develop properties Modeling of compatibility with potential containment Long-term testing of compatibility Storage optimization Advanced modeling of PCM/heat pipe interfaces including free convection in combined solid/liquid states Exergy and cost optimization 2-D and 3-D models Heat Pipe Felt wick enhancements for robust high performance Proof-of-concept hardware subscale demonstration ³ Shabgard, H., Faghri, A., Numerical Simulation of Latent Heat Thermal Energy Storage (LHTES) Systems for Solar Steam Generation Applications, to be submitted to peer-reviewed journal (2013). ⁴ Shabgard, H., Robak, C.W., Bergman, T.L., Faghri, A., "Heat transfer and exergy analysis of cascaded latent heat storage with gravity-assisted heat pipes for concentrating solar power applications," Solar Energy 86 (3) (2012) 816–830.
Q3 KEY RESULTS AND OUTCOMES	NEXT QUARTER
 Two metallic PCM's fabricated and characterized. Leading candidate must be re-fabricated and tested in inert atmosphere in Q3 Identified thermodynamic possibility of compatibility issues with PCM and containment. Developed 100-hour test to evaluate acute attack Heat pipe wick samples fabricated, awaiting characterization Manuscript "Numerical Simulation of Heat Pipe-Assisted Latent Heat Thermal Energy Storage Unit for Dish-Stirling Systems" to ASME 2013 International Mechanical Engineering Congress & Exposition. Preliminary studies on HP-assisted LHTES with a metallic PCM and performance compared with LHTES systems utilizing a salt PCM. Further enhanced 2-D PCM/Heat pipe system model, including diode effects, initial natural convection, and alternative 2-D approach Manuscript "Dish Stirling Advanced Latent Storage Feasibility" for SolarPACES 2013 conference 	 PCM candidate evaluation Complete 100-hour acute compatibility test and sample evaluation Begin design of long-term compatibility test Design and implement test for liquid metal embrittlement 2-D PCM model development Parametric studies and optimization of PCM/HP system Develop design guidelines for LHTES/HP system Prepare manuscript on 2-D model Heat pipe advanced wick development Complete characterization and modeling of wicks and downselect Systems analysis Complete extend model based on findings of 2-D PCM model Complete probabilistic cost studies