

Direct s-CO₂ Receiver Development

National Renewable Energy Laboratory

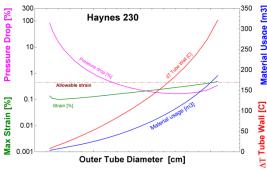
April 15, 2013 |. Wagner

PROJECT OBJECTIVES

<u>Goal</u>: Develop a high-temperature (650°C), high-efficiency (>90%) power tower receiver using supercritical CO₂ directly as the heat transfer fluid

- > Direct interface with turbine enhances system performance
- Fluid stability simplifies receiver design

Innovation: Advances in supercritical CO₂ power cycles have caused demand for new, higher-temperature receiver designs.

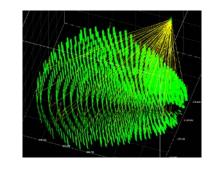

This project uses novel cycle configurations¹ and advances in heat exchanger technology² to meet the SunShot cost and performance targets

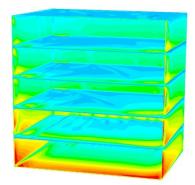
Milestones: Achieve 85% design point thermal efficiency

¹Turchi, C. S., Ma, Z., Neises, T., & Wagner, M. J. (2012). ²Li, Q., Flamant, G., Yuan, X., Neveu, P., & Luo, L. (2011).

KEY RESULTS AND OUTCOMES

Material Us




Parameter	Value (%)
Thermal loss due to reflection	0.9- 2.7
Thermal loss due to convection	0.7 - 1.2
Thermal loss due to emission	3.2 - 3.6
Thermal efficiency	92.5 - 95.2

- High-temperature nickel allovs offer suitable operation window for 650°C operation. System-level optimization must balance peak strain and pressure drop with absorber surface temperature and material usage/cost.
- Simulation results predict NREL concept can achieve >90% thermal efficiency

APPROACH

- Develop design and characterization tools using in-house and • commercial software
- Optimize and characterize incident flux profile, absorber material strain, convective and emissive thermal losses
- Improve LCOE through system-level design optimization •

NEXT MILESTONES

- Down-select to single absorber technology
- Achieve 85% design point thermal efficiency (COMPLETE)
- Achieve 90% design point thermal efficiency (In Progress) ٠
- Work to date has demonstrated with high confidence that 85% thermal efficiency can be achieved and has identified a receiver design believed to exceed 92% in thermal efficiency.
- Continued work focused on:
 - Improve geometry optimization
 - Model system interactions with thermal storage, power cycle
 - Characterize off-design thermal performance
- Project risk is reduced through advanced analysis, novel application of standard heat absorber technology