Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

DOE CSP Program Review, 24 Apr 2013

Prof. Christine Hrenya Dr. Zhiwen Ma Dr. Aaron Morris Dr. Sreekanth Pannala Dr. Tom O'Brien University of Colorado (PI) NREL (co-PI) University of Colorado (post-doc) ORNL (co-PI) retired NETL (co-PI)

Team Members

Christine Hrenya University of Colorado *Continuum and DEM models of solids flows* Zhiwen Ma NREL Concentrating Solar Power (CSP) plants

Aaron Morris University of Colorado High-performance computing, Gas-solid modeling (beginning 3/15/13)

Tom O'Brien Consultant (retired NETL) *MFIX multiphase models* Sreekanth Pannala ORNL High-performance computing, including MFIX

BRIDGE Project

Objective

Fundamental modeling tool that can be used for design of particle receiver: understanding and prediction of heat transfer in solids flows, including radiation

Why fundamental (no empirical / adjustable parameters)?

Previous findings:

- (i) for rotating heated tumblers, high-heat capacity particles are heated faster for lower conductivities of the interstitial medium [1]
- (ii) for shear flows along an unbounded, inclined plate, the thermal conductivity of dilute flows increases with shear rate [2] while the opposite occurs for denser flows [3]
- \Rightarrow non-intuitive behavior call for first-principles models
 - empiricism is costly and time-consuming
 - empiricism not reliable for extrapolation

Less CPU time

Modeling Approaches: Various Scales

Two-fluid Model (TFM)

- Gas = continuum• (averaged over *many* particles)
- Solids = continuum•

$$\frac{\partial}{\partial t} \left(\varepsilon_{s} \rho_{s} \mathbf{V}_{s} \right) + \nabla \cdot \left(\varepsilon_{s} \rho_{s} \mathbf{V}_{s} \mathbf{V}_{s} \right) = \nabla \cdot \mathbf{\tau}_{s} + \varepsilon_{s} \rho_{s} \mathbf{g} + \mathbf{F}_{drag}$$

Discrete Element Model (DEM)

- Gas = continuum•
- Solids = discrete $m_i \frac{d\mathbf{V}_{si}}{dt} = m_i \mathbf{g} + \mathbf{F}_{ci} + \mathbf{F}_{drag,i}$ •

Gas

More detail,

Fewer closures

Solids

Typical CPU times for DEM $O(10^5 \text{ particles})$ Serial processor: Parallel processors: $O(10^8 \text{ particles})$

 \rightarrow ORNL facility

→ MFIX DEM (and continuum): parallelized

Model Development for Solar Collector

Our Approach

• Use DEM simulations as "Ideal Experiment" to test continuum theory

Computational Tool: MFIX (Multiphase Flow with Interface eXchanges)

- public, cost-free, open-source code from DOE NETL
- DEM model: conduction, convection and radiation (part-part only)
- continuum model: conduction and convection

Continuum Models: State of the Art

- No validation to date for conduction, convection, or radiation
- caveat 1: flow instabilities difficult to deal with (similar to turbulence)
- caveat 2: possible large gradients in solids flow variables (requires higher-order model)

Steps

- <u>Single-tube system, no radiation</u>: generation of DEM validation data, and comparison with continuum predictions
- <u>*Two-tube system, with radiation: generation of DEM validation data, and comparison with continuum predictions*</u>
- <u>Prototype receiver, with radiation</u>: assess relative importance of radiation on particle absorber heat transfer

1. Model Verification / Validation for Non-Radiative Heat Transfer (BP1)

2. Initial Assessment of MFIX Radiation Model (BP1)

3. Verification of DEM Radiation Model and Generation of DEM validation data (BP2)

4. Implementation, Verification, and Validation of Continuum Radiation Model (BP2)

5. Simulation of Prototype Particle Receiver with Radiative Heat Transfer (BP3)

<u>Note:</u> The end date for Year 1 has recently been updated by DOE from 11/15/13 to 2/14/14.

Current MFIX Modeling Efforts

- Fully coupled two-phase flow.
- Solid phase modeled by either continuum or DEM solver.
- Heat transfer models for solid and fluid phases.
 - Particle-particle conduction.
 - Particle-fluid-particle conduction.
 - Particle-fluid convection.
 - Particle-particle radiation.
- Parallelized for supercomputers.

Current Modeling Efforts

Preliminary DEM Simulations

- Fluidized bed with central jet.
 - Fully coupled phases, no heat transfer.

Univ. Colorado and ORNL Supercomputing Facilities

Janus (Univ. Colorado)	Titan (ORNL)
16,416 cores	299,008 cores
Hex-core 2.8Ghz Intel Westmere processors	16-core AMD Opteron 6274 processors + GPUs
24GB RAM per node	32GB + 6GB RAM per node
184 teraflops	20 petaflops

DEM

- Parallelization is a new addition (Gopalakrishnan and Tafti, 2013)
- Strong scalability and can simulate millions of particles.

P. Gapalakrishnan, D. Tafti, (2013) "Development of parallel DEM for the open source code MFIX", in *Powder Tech.*, **235**, pp 33-41

Current Modeling Efforts

Preliminary DEM Simulations

- Fluidized bed with central jet.
 - Fully coupled phases.
 - No heat transfer.
- Bubbling bed parallel speed-up test on Janus supercomputer.
 - Simulated 140,400 particles
 » 2.56 mil particles in ¹
 - 30 minutes to simulate 0.1s with 24 processors.
 - Approx. half a cup of 1mm diameter particles.
 - Approx. 1tablespoon for 500 μm particles.
- P. Gapalakrishnan, D. Tafti, (2013) "Development of parallel Dem for the open source code MFIX", in *Powder Tech.*, **235**, pp 33-

DEM Solution with Heat Transfer

- Identify relative importance of various heat transfer mechanisms.
- Determine heat transfer coefficients and distribution of particle temps.
- Comparison to particle flow/ heat transfer experiments.
- Verification of future continuum model.

Progress Towards Single Tube DEM

MFIX Modifications

- Need to implement hot wall B.C.(MFIX currently has only adiabatic walls for DEM).
- Cutcell algorithm for flow over internal geometries is still under development.

Input Parameters

• Tube size, shape, heat flux, particle properties

Gas only

Vorticity field

2 3 Speed cm/s 2 250 60 200 30 y [cm] 4 £100 2 33 2 60 70 x [em]

Solids only

Heat Transfer Mechanisms in MFIX

Particle-Particle Conduction

- Cond. across contact area.
- Small Biot numbers ٠
- Normally not important bc ٠ collisions are brief and contact areas are small.
- Collision duration is important

Particle-Fluid-Particle Conduction

gas

large

- Conduction across ۲ interstitial fluid in gap.
- Assumes heat transfer ٠ is in direction along axis connecting part. centers.
- Polydispersity ٠

Heat Transfer Mechanisms in MFIX

Particle-Fluid Convection

- MFIX Uses Nusselt number correlations (1952).
- Correlations were derived from single particle systems and should be improved when the particle volume fraction is high.
- Can use LBM or Gunn's correlations for improved Nusselt number at higher volume fractions.
- Expected to be significant heat transfer mechanism.

$$\langle \mathrm{Nu} \rangle = \frac{h_{conv}}{\kappa_g / 2R_p}$$

Re = $\frac{\rho_g \varepsilon_g \| \mathbf{V}_g - \mathbf{V}_p \| 2R_p}{\mu_g}$

Heat Transfer Mechanisms in MFIX

Particle-Particle Radiation

- Best approach would compute view factors between all particles/walls with all other particles and solve radiative balance equations.
 - Computationally expensive MFIX uses simplified model
- Defines region where radiation occurs and uses a correlation to compute an environment temperature.
- Radius of radiation sub-domain = 1.5Dp

- Scalability of parallel MFIX DEM increases with # particles
- Preliminary DEM simulations around single, unheated tube qualitatively correct
- Reviewed heat transfer mechanisms in MFIX
 - Particle-particle conduction
 - Particle-gas-particle conduction
 - Particle-gas convection
 - Particle-particle radiation

- DEM prediction of particle trajectories in flow domain
- Extension of DEM heat transfer to particle-wall contacts
- Single-tube DEM simulation with heat transfer
- Single-tube continuum simulation