Near-Blackbody Enclosed Particle Receiver

Award #, DE-EE0001586

Budget Period I

Presentation date: April 24, 2013

Principal Investigator: Zhiwen Ma Team members: Greg Glatzmaier, Mark Mehos, Tim Wendelin, Mike Wagner (NREL); Bartev Sakadjian, et al. (B&W); Liang-Shih Fan, Alan Wang, Dawei Wang (OSU); Heng Ban, Lejun Li, Austin Fleming, Charlie Folsom, Zhifen Wang (USU); Merrill Wilson (Ceramatec); Brain Koeppel (PNNL); Dana Goski, Matt Lambert (Allied Mineral).

Muli-zone Dispenser Controlled by Sliding Gates Gate Closed

Gate Open Slide Gate Incident solar flux on tubular absorber openings Particle Down Comer Receiver

(NBB Particle Receiver)

INRF

ATIONAL RENEWABLE ENERGY LABORATORY

Project Objectives

- Develop the particle receiver that meets design metrics of 800°C particle-exit temperature, ≥90% thermal efficiency, with adequate service life, and cost below \$150/kWt.
- Demonstrate a prototype particle-receiver design.
- Design a fluidized-bed heat-exchanger integrated in a hightemperature CSP system.

 Use gas/solid two-phase flow as heat transfer fluid and separated solid particle as storage medium for low-cost, highperformance CSP.

Benefits:

- Avoid freezing issue at low temperature (below 0C) and hightemperature stability concerns (>1000C).
- Use radiation principle analogue to a blackbody furnace.
- Leverage successfully developed and commercialized fluidizedbed technology for the thermal system integration.
- Build high-temperature particle-thermal energy storage economically.

Fluidized Bed (FB)-CSP with Particle Receiver and TES

This project focus on particle receiver development, performance, and cost analyses.

Comparisons of FB-CSP to Molten-Salt System

HTF / Storage Media	State-of-the-Art: Nitrate Salt (1.00 \$/kg)	Our Approach: Solid particle (e.g., ash, sand) (0.01 \$/kg)	Benefits of the FB-CSP system
Precondition time	Conditioning, 3 months	None	Early revenue
Salt freezing protection	Required	None	Low O&M
Stability	<600°C	>1000°C	High efficiency
Corrosion	High with chloride impurity	No	Long life
Structure materials	Steel, stainless steel, or alloy	Ceramic/concrete	Low cost
TES cost estimation	30–75 \$/kWh _{th}	<10 \$/kWh _{th}	Lower LCOE
Supporting power cycles	Super-heated steam/S- CO ₂	SH/SC-Steam/S-CO ₂ /air- Brayton	Efficiency

Fluidized-bed CSP using stable solid particles have both cost and performance advantages over a molten-salt system.

Development and Integration Goal

102

- This project will focus on the receiver development.
- Heat exchanger and TES leverage mature technology.
- The FB-CSP system provides flexibility to different power cycles.

Innovative Receiver Design

2. Transform 2-D panel heat absorption to 3-D volumetric heat transfer by using arrayed absorber tubes.

Confidential, NREL Protected Information

Development Focus

Parameters for the receiver design.

U.S. Department of Energy

Material properties	Design parameters	Operating parameters	
Particle physical properties	Absorber tube shape:	Particle exit temperature:	
Particle size	Circular, polygon	Particle-absorber heat	
 Size distribution 	Aspect ratio	transfer coefficient.	
Thermal conductivity	Absorber tube dimension and	 Particle speed 	
Density	heat transfer area:	 Flow pattern 	
Absorber optical properties	Tube repository angle	 Residence time 	
Reflectivity	• Tube number and space	Absorber temperature	
Specularity	Tapered-end angle	 Flux distribution 	
Thermal conductivity	Tube inclination angle	Receiver thermal efficiency	

Preliminary Analyses for Development Focuses

Parameter sensitivity study on absorber temperature profile indicates that flux distribution and particle/absorber heat transfer are important.

Solar Field and Flux Distribution Mapping

Using the NREL SolarPILOT for solar field layout, and SolTrace Program for flux distribution across array of hexagonal tubes.

Absorber Flux Distribution

SunShot

Better flux spreading for high reflective material

Reflection Efficiency vs. Absorber Shapes and **Properties**

Thermal Performance Preliminary Results

(b) Velocity vector and temperature at 45°

(c) Absorber natural convection losses for different angles and temperatures

The NBB particle receiver is on track to achieve >90% thermal efficiency for >650°C working fluid temperature.

Particle Flow Modeling Using Fluent

Modeling and testing results show granular particle flow interaction with absorber.

Particle Flow and Heat Transfer Testing Setup

15

Material Candidates for Absorber Tubes

Materials	Direct Sintered SiC	Stainless Steel	Inconel
Thermal conductivity (W/m·K)	30-150	16-21	10-32
Maximum allowable temperature - T _{max} (°C)	1,600	870	980-1,149
Tensile/yield strength (MPa)	250	240-425	170-670
Corrosion/oxidation resistance	Excellent	Good	Very good
Wear resistance	Excellent	Good	Very good
Fabrication/	Green body	Sheet metal –	Sheet metal –
manufacturability	forming/sintering	rolled/welded	rolled/welded
Typical material	Direct Sintered SiC	SS-316,	IN-800
Material cost (\$/kg)	~2 (powder)	~4	~16
Cost (life cycle cost)	X1 (X3 if replaced)	X2	X8
Challenges	Mass production to be defined	Limited @ high temperature	High cost
Benefits	Good properties @ high temperature	Low cost, easy fabrication	Good properties @ high temperature

Conclusions

- □ Flux spreading makes the receiver be able to work at high incoming flux., with a maximum of 1/4 the incoming flux on the absorber wall.
- Due to a tapered end to form the enclosed particle space, reflection loss ranges from 0.5% to 3%, for a parabolic concentrator.
- Natural convection loss can be below 2% for an inclined absorber tube
- The thermal efficiency is on track to achieve >90% thermal efficiency for working-fluid exit temperatures of >650° C
- Testing station is under development to obtain the heat transfer coefficient of particle-to-absorber tubes.
- Material selection for the receiver will balance the needs of the performance requirement, mass-production opportunity, and cost reduction.

Acknowledgement

- This work was supported by the U.S. Department of Energy under Contract No. DE-EE0001586.
- Contact: Zhiwen Ma, 303-275-3784.
 zhiwen.ma@nrel.gov

NATIONAL LABORATORY

babcock & wilcox power generation group 20 south van buren avenue > p.o. box 351 > barberton, oh 44203-0351 usa > phone 330.753.4511 > fax 330.860.1886 > www.babcock.com

NATIONAL RENEWABLE ENERGY LABORATORY

