# High Density Thermal Energy Storage with Supercritical Fluids (SuperTES)

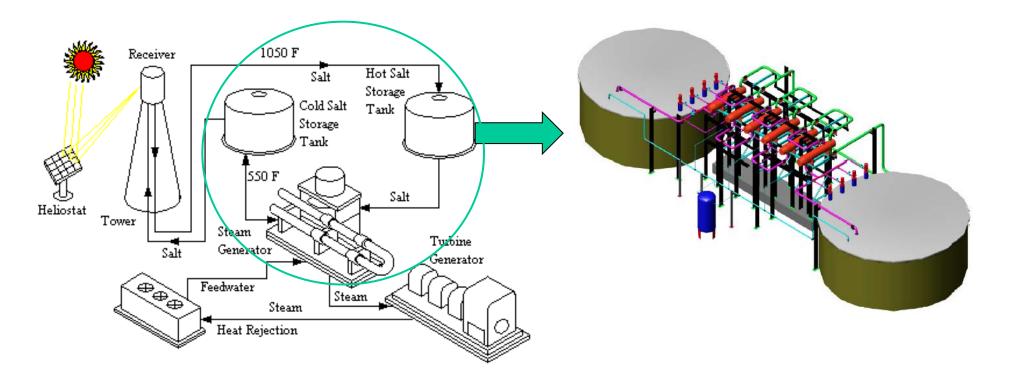
#### Gani B. Ganapathi (JPL/Caltech) Richard Wirz (UCLA)

Presented at the SunShot Concentrating Solar Power Program Review 2013 April 23-25, 2013 Phoenix, AZ

**UCLA** University of California Los Angeles, CA

Copyright 2013. All rights reserved.




**Jet Propulsion Laboratory** 





- A novel high-energy density, low-cost thermal energy storage concept using supercritical fluids
  - Enhanced penetration of solar thermal for baseload power
  - Waste heat capture
- Presents feasibility looking at thermodynamics of supercritical state, fluid and storage system costs
- System trades
  - comparing the costs of using supercritical fluids vs molten salt systems in utility-scale applications

## UCLA Solar Thermal Plant with Storage



Ref: "Assessment of Parabolic Trough and Power Tower Solar Technology Cost and Performance Forecasts" NREL/SR-550-34440 (2003) by Sargent and Lundy LLC Consulting Group

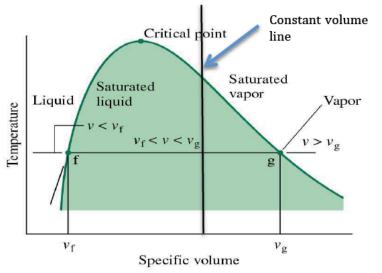
# **ARPA-E Funded Project**



- ARPA-E's transformational technologies call
- Proposed key novel aspects:
  - Supercritical storage allowing significantly higher storage densities
  - Modular and single-tank (vs two-tank as for molten salt)
    - Internal heat exchangers (minimized heat loss)
- Strong team led by UCLA (Dr. Wirz) covering breadth of TRLs
  - UCLA : Low-TRL (fluid chemistry, system studies and build support)
  - JPL: Mid TRL (thermal, fluids, structural, tank design and build)
  - SoCalGas: High TRL (field demo)
  - Vendors: Chromasun (provider of solar panels)
- Prototype and field demonstrations

# **Project Objectives**




- Three primary goals:
  - Demonstrate a cost-effective thermal energy storage (TES) concept for high temperature applications
  - Develop a modular single-tank TES design
  - Demonstrate a 30 kWh TES
- Goals will be accomplished in 2 phases (Top level)
  - Phase 1 activities (Concept development):
    - Fluid selection
    - System analysis
    - Development and testing with a small (5 kWh/66L) tank
  - Phase 2 activities (Scale-up):
    - Development of prototype (10 kWh/133L) tank
    - Performance characterization of micro-CSP with and without TES at JPL site
    - Development of full-scale (30 kWh/400L) tank for field integration at SoCalGas site

# UCLA Thermal Energy Storage SOA

- Current sensible heat technologies
  - two-tank direct,
  - two-tank indirect,
  - single-tank thermocline
  - storage media such as concrete, castable ceramics rely on sensible heat
- PCM explored in 80's by DOE
  - Abandoned due to complexities, life
- In 2008 restarted funding TES and HTF
  - Mostly sensible heat related
  - Or didn't address costs \$/kWh
- ARPE-E's new program "High Energy Advanced Thermal Storage"

# **Supercritical Storage**

• Supercritical operation permits capturing and utilizing heat taking advantage of latent and sensible heat, both in the two-phase regime as well as in supercritical regime while at the same time, reducing the required volume by taking advantage of the high compressibilities



- Storage performance and pressures can be optimized by judicious selection of fluid with the following key properties
  - High Latent Heat of Vaporization,  $\Delta H_{vap}$
  - High specific heat,  $C_p (C_v)$
  - High T<sub>c</sub>, T<sub>b</sub>
  - Low vapor pressure

#### SunShot CSP Program Review 2013

### **Initial Fluid Comparisons**

| Moderate Temperature Application ( $T_{cold}$ = 373K, $\Delta T$ = 100K) |                                                                      |                                                                                |                      |  |  |  |  |  |  |
|--------------------------------------------------------------------------|----------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|
|                                                                          | Specific Storage<br>(kJ/kg)                                          | Volumetric Storage<br>Capacity (kJ/m <sup>3</sup> ) (vapor<br>press at 200 °C) | \$/kWh (\$/kg)       |  |  |  |  |  |  |
| Compressed<br>water                                                      | 418                                                                  | 362,000 (15 atm)                                                               | Negligible           |  |  |  |  |  |  |
| Therminol<br>(VP-1)                                                      | 229                                                                  | 228,700 (<1 atm)                                                               | 78 (\$5/kg)          |  |  |  |  |  |  |
| Fluid1                                                                   | 241                                                                  | 303,850 (<1 atm)                                                               | 8 (\$0.55/kg)        |  |  |  |  |  |  |
| Fluid2                                                                   | 200                                                                  | 216,609 (<1 atm)                                                               | 16 (\$1/kg)          |  |  |  |  |  |  |
|                                                                          | High Temperature Application ( $T_{cold}$ = 563K, $\Delta T$ = 100K) |                                                                                |                      |  |  |  |  |  |  |
| Supercritical<br>Fluid1                                                  | 720                                                                  | 324,741<br>(66 atm, z = 0.25)                                                  | 2.75 (\$0.55/kg)     |  |  |  |  |  |  |
| Supercritical<br>Fluid2                                                  | 541                                                                  | 387,122<br>(66 atm, z = 0.219)                                                 | 6.50 (\$1.00/kg)     |  |  |  |  |  |  |
| Molten Salt<br>(NaNO <sub>3</sub> ,<br>KNO <sub>3</sub> )                | 145                                                                  | 129,860 (2 tanks)                                                              | 25 – 50 (\$1-\$2/kg) |  |  |  |  |  |  |

- 400 organic fluids evaluated based on thermodynamics alone
- Factor of 10 cost reductions on fluids for high temperature applications possible



• Departure functions used with Peng Robinson (P-R) EOS to determine state changes in enthalpy for fluid

$$A - A^{0} = -\int_{\infty}^{V} (P - \frac{RT}{V}) dV + RT \ln \frac{V}{V^{0}}$$
 Helmoltz Departure Function  

$$S - S^{0} = \frac{\partial}{\partial T} (A - A^{0}) = \int_{\infty}^{V} \left[ \left( \frac{\partial P}{\partial V} \right)_{V} - \frac{R}{V} \right] dV + R \ln \frac{V}{V^{0}}$$
 Entropy Departure Function  

$$H - H^{0} = (A - A^{0}) + T(S - S^{0}) + RT(Z - 1)$$
 Enthalpy Departure Function  

$$H[T_{2}, P_{2}] - H[T_{1}, P_{1}] = \left( H[T_{2}, P_{2}] - H^{0}[T_{2}, P_{0}] \right) + \left( H^{0}[T_{2}, P_{0}] - H^{0}[T_{1}, P_{0}] \right)$$
 Enthalpy Change between  

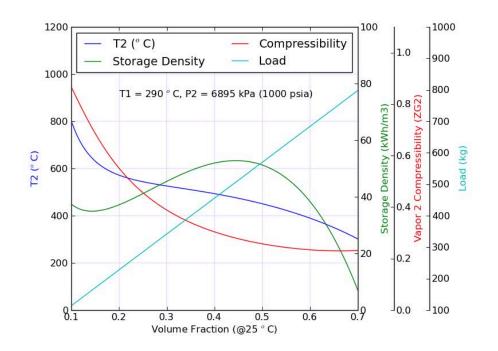
$$+ \left( H^{0}[T_{1}, P_{0}] - H^{1}[T_{1}, P_{1}] \right)$$
 States 1 & 2

- End state pressures and temperature determine the tube wall thickness
- Fixed end temperature chosen not to exceed 500 °C as allowable stress drops significantly beyond this temperature

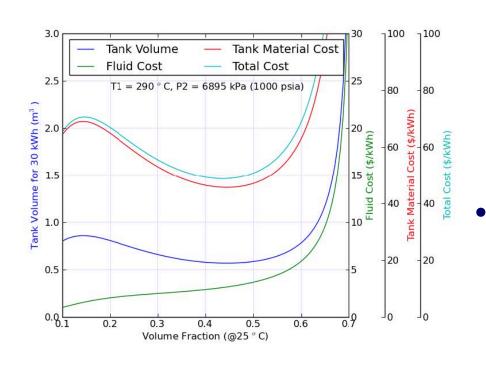




- Fluid enthalpy changes with fixed volume
  - Fluid cost \$/kWh based on fluid cost \$/kg and loading
  - Tank material cost \$/kWh based on tube mass which is driven by fluid pressure
- Peng-Robinson equation of state using  $P_c$ ,  $T_c$ ,  $\omega$
- Heat transfer effects from HTF to tube negligible
- Analysis assumed Stainless Steel TP 316 for its corrosion resistance
  - Optimal tube wall thickness for different pressure ratings conforming to ASTM A213, ASTM A249 or ASTM 269 respectively


# **Modeling Results - Thermo**




- Initial temp (T<sub>1</sub> = 290 °C, P<sub>1</sub> = 413 kPa/60 psia) for all cases
- 4 final pressure (P<sub>2</sub>)cases
  - 4.2MPa (609 psia)
  - 6.895 MPa (1000 psia)
  - 10.342 MPa (1500 psia)
  - 13.789 MPa (2000 psia)
- As loading (volume fraction) increases in 1m<sup>3</sup> tank
  - Storage density [green] goes through peak
  - Final temperatures, T2 [blue] comes down from 800 °C @ fixed P<sub>2</sub>
  - Compressibility, z, [red] changes from near ideal gas to highly non-ideal



UCLA



### UCLA Modeling Results – System Costs



Sample result for  $P_2 = 6.985$  MPa (1000 psia)

- Pressure rating derived from Lame formula with 130 MPa (18.8 kpi) allowable stress and 4:1 FS
  - Derating of 0.6 assumed for 400°C <T<sub>2</sub><</li>
     500°C
    - Example for 500 °C, P<sub>2</sub>= 6.895 MPa [1000 psia ] need to spec tube dia for 11.49 MPa [1666 psia]
      - Need thickness > 2.36E-3 m [0.093"] for
         5.08E-2 m [2"] tube OD
  - Total cost goes through a minimum at ~45% fill fraction
    - Minimum cost for given final fill conditions is ~\$55/kWh
    - Fluid cost [green] is small fraction of total cost [cyan]

# UCLA Summary of Optimal Costs

• Optimal cost results for 4 final pressure cases when T2 <= 500 °C

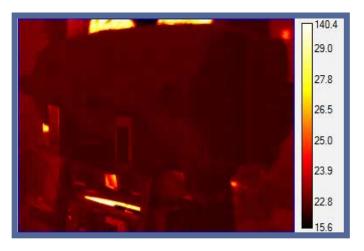
| P <sub>2</sub> (psia) | T <sub>2</sub><br>(°C) | Storage<br>Density<br>(kWh/m <sup>3</sup> ) | Load<br>(kg/m³) | Fluid Cost<br>(\$/kWh <sub>t</sub> ) | Tank Cost<br>(\$/kWh <sub>t</sub> ) | Total Cost<br>(\$/kWh <sub>t</sub> ) | Salt Cost<br>(\$/kWh <sub>t</sub> )<br>(@\$2/kg) |
|-----------------------|------------------------|---------------------------------------------|-----------------|--------------------------------------|-------------------------------------|--------------------------------------|--------------------------------------------------|
| 609                   | 461                    | 70.0                                        | 460             | 2.17                                 | 23.02                               | 25.19                                | 29.30                                            |
| 1000                  | 498                    | 84.8                                        | 439             | 1.71                                 | 28.43                               | 30.14                                | 24.91                                            |
| 1500                  | 492                    | 99.4                                        | 535.5           | 1.78                                 | 37.52                               | 39.3                                 | 22.19                                            |
| 2000                  | 499.6                  | 112                                         | 570             | 1.68                                 | 44.88                               | 46.57                                | 22.18                                            |

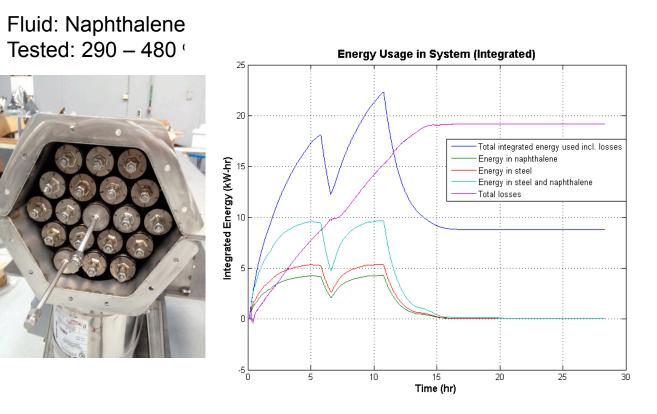
- Results indicate that though storage density increases as P<sub>2</sub> is allowed to go higher, the penalty is higher cost as cost of metal starts making an impact
- For the lowest cost case, cost of salt alone exceeds cost of supercritical naphthalene + tank material cost
  - Assumptions
    - Bulk cost of naphthalene = \$0.36/kg
    - Bulk cost of eutectic salt (KNO3+NaNO3) = \$2/kg
    - Bulk cost of SS 316H (alibaba.com) = \$1.40/kg

# UCLA Cost Comparisons for Utility-Scale

|                                                                                                                                                                                   | 6-hr storage | 12-hr storage | 18-hr storage | Notes                        |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|---------------|------------------------------|--|--|--|--|
| Net Power (MW <sub>e</sub> )                                                                                                                                                      | 103          | 103           |               | Ref:                         |  |  |  |  |
| Gross Power (MW.)                                                                                                                                                                 | 118          | 118           | 118           |                              |  |  |  |  |
| Rankine effic.                                                                                                                                                                    | 37.4%        | 37.4%         | 37.4%         |                              |  |  |  |  |
| Thermal storage (MWh,)                                                                                                                                                            | 1893         | 3786          | 5679          |                              |  |  |  |  |
| Temp range (500-375 °C) for supercritical fluid                                                                                                                                   | 125          | 125           | 125           |                              |  |  |  |  |
| Temp range (500-370 °C) for molten salt                                                                                                                                           | 110          | 110           |               | Assumes same hypass ons      |  |  |  |  |
| Temp range (500-390 °C) for molten salt     110     110     110     Assumes same bypass ops.       Molten Salt (HiTec Solar Salt) T <sub>1</sub> - 500 °C/T <sub>2</sub> = 390 °C |              |               |               |                              |  |  |  |  |
| Cp salt (J/kg/K)                                                                                                                                                                  | 1550         | 1550          | 1550          |                              |  |  |  |  |
| Mass Salt (10 <sup>6</sup> kg)                                                                                                                                                    | 52           | 104           |               | includes 30% stagnant excess |  |  |  |  |
| Cost of salt (\$M) (@ \$2/kg)                                                                                                                                                     | 104          | 208           | 312           | includes 50% stagnant excess |  |  |  |  |
| Cost of salt (\$M) (@\$8.80/kg)                                                                                                                                                   | 457          | 915           | 1372          |                              |  |  |  |  |
| Pumps+HEx (\$M)                                                                                                                                                                   | 30           | 45            |               | No pump, Hex in single tank  |  |  |  |  |
| Tanks (\$M)                                                                                                                                                                       | 43           | 64.5          |               | Tank cost removed            |  |  |  |  |
| Piping, Insulation, Valves, Fittings (\$M)                                                                                                                                        | 1.5          | 1.5           | 1.5           |                              |  |  |  |  |
| Foundation & Support Structures (\$M)                                                                                                                                             | 0.5          | 0.75          | 1             | x1.5 factor                  |  |  |  |  |
| Instrumentation & Control (\$M)                                                                                                                                                   | 6            | 6             | 6             |                              |  |  |  |  |
| Total \$M (@\$2/kg)                                                                                                                                                               | 112          | 216           | 320           | Tank cost removed            |  |  |  |  |
| Total \$M (@\$8.80/kg)                                                                                                                                                            | 465          | 923           | 1380          | Tank cost removed            |  |  |  |  |
| Salt \$/kWh <sub>t</sub> (@ \$2/kg)                                                                                                                                               | 55           | 55            | 55            |                              |  |  |  |  |
| Total \$/kWh <sub>t</sub> (@ \$2/kg)                                                                                                                                              | 59           | 57            | 56            |                              |  |  |  |  |
| Salt \$/kWh, (@\$8.80/kg)                                                                                                                                                         | 242          | 242           | 242           |                              |  |  |  |  |
| Total \$/kWh, (@8.80/kg)                                                                                                                                                          | 246          | 244           | 243           |                              |  |  |  |  |
| Supercritical Fluid (Naphthalene @ T <sub>1</sub> =500°C/T <sub>2</sub> =375°C, 880 psia)                                                                                         |              |               |               |                              |  |  |  |  |
| Fluid Cost (\$/kWh,)                                                                                                                                                              | 2            | 2             | 2             | Naphthalene (\$0.33/kg bulk) |  |  |  |  |
| Tank material cost (\$/kWh <sub>1</sub> )                                                                                                                                         | 33           | 33            | 33            | SS 316L (\$1.40/kg bulk)     |  |  |  |  |
| Total Fluid cost (\$M)                                                                                                                                                            | 3.8          | 7.6           | 11.4          |                              |  |  |  |  |
| Tank Material cost (\$M)                                                                                                                                                          | 62           | 125           | 187           |                              |  |  |  |  |
| Pumps + HEx (\$M)                                                                                                                                                                 | 0.0          | 0.0           | 0.0           | Internal HEx single tank     |  |  |  |  |
| Piping, Insulation, Valves, Fittings (\$M)                                                                                                                                        | 1.5          | 1.5           | 1.5           | same as for salt             |  |  |  |  |
| Foundation & Support Structures (\$M)                                                                                                                                             | 0.5          | 0.75          | -             | same as for salt             |  |  |  |  |
| Instrumentation & Control (\$M)                                                                                                                                                   | 6            | 6             | 6             | same as for salt             |  |  |  |  |
| Total \$M                                                                                                                                                                         | 74           | 141           | 207           |                              |  |  |  |  |
| Total \$/kWh <sub>t</sub>                                                                                                                                                         | 39           | 37            | 36            |                              |  |  |  |  |
|                                                                                                                                                                                   |              |               |               |                              |  |  |  |  |

- Full analysis for comparing molten salt vs supercritical fluids for utility scale for 6-,
  - 12- and 18-hr storage.
  - 100 MWe utility from report by Worley Parsons
- System cost using
   supercritical fluids is lower
   than molten salt
  - No external heat exchanger
  - No second pump (only HTF pump from field)

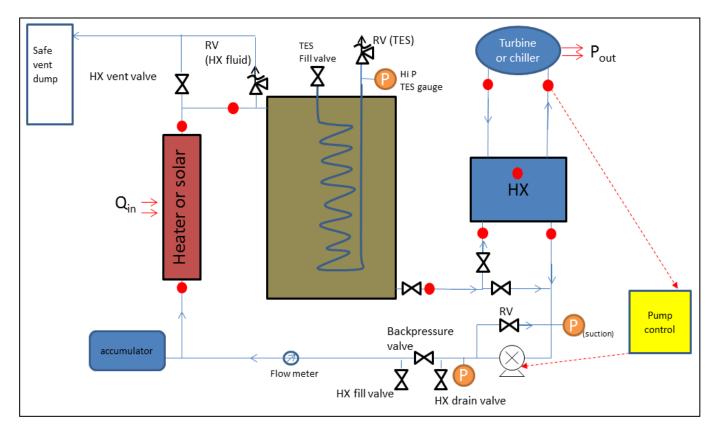




# **Current Activities at JPL**



#### 5 kWh High Temp (500 °C) Testbed



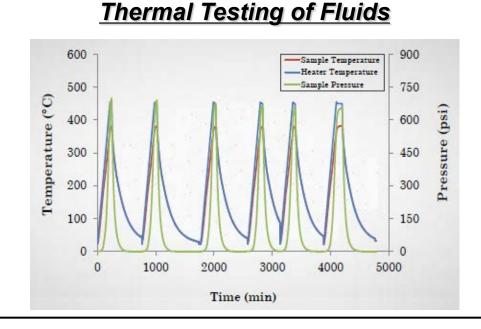





Status: Test completed, results documented in paper to be published in ASME Sustainability Conf 2013

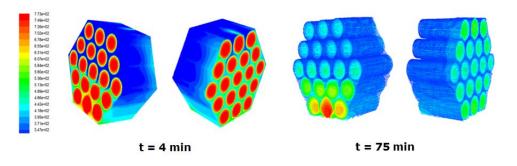
### **Current Activities at JPL**

#### Moderate temperature (80-100 °C) testbed



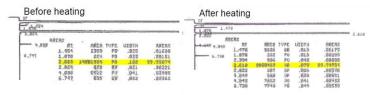

- Goals:
  - Demonstrate single tank concept in system with charge/discharge
  - Provide experience for developing 30 kWh TES to be demonstrated at SoCalGas facility
- Status
  - Fluid selected
  - Design complete
  - Procurements initiated

UCLA

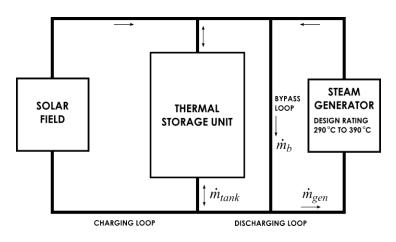

### **Current Activities at UCLA**

#### JPL




UCLA

#### Heat and Mass Transfer

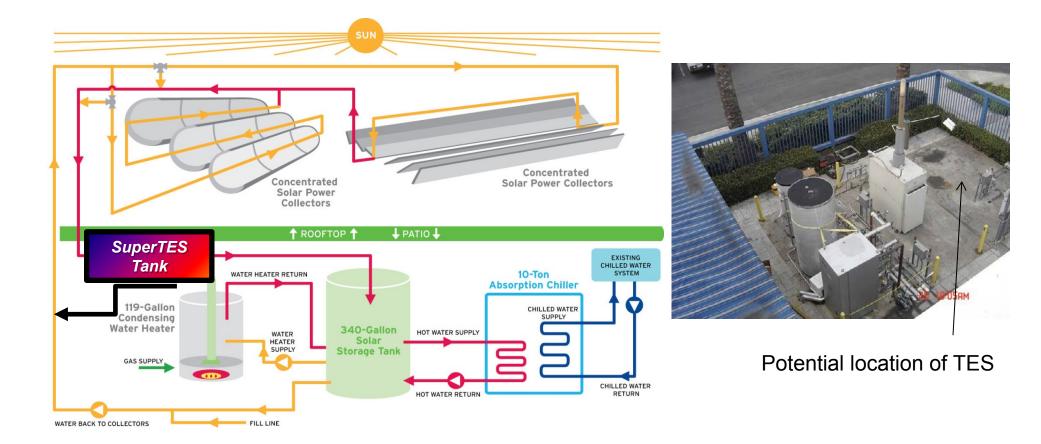



#### **Chemistry Evaluation**





#### System Modeling




SunShot CSP Program Review 2013



### 30 kWh Testbed

Field demo of moderate temperature TES at SoCalGas facility at Downey, CA



JPL







- A novel thermal energy storage concept has been funded for development by ARPA-E that promises significant cost advantages over molten salt system
- The cost of the chosen fluid is much lower than molten salt and the difference will continue to grow as demand for nitrates grow for use as fertilizer
- A well integrated set of activities coordinated between UCLA and JPL covers all activities required to make this project a success