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Solar heat is used to drive the reduction step of  

a thermochemical cycle 
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• Energy is stored in chemical bonds 

• Energy is recovered upon chemical re-oxidation 

heat 

heat 

Introduction 



Thermochemical heat storage can provide very 

high energy storage densities 

Technology Energy Density (kJ/kg) 

Gasoline  45000 

Sulfur  12500 

Cobalt Oxide  850 

Molten Salt (Phase Change)  230 

Molten Salt (Sensible)  155 

Lithium Ion Battery  580 

Elevated water Dam (100m)  1 

• High energy density with low storage cost 

• Ambient and long term storage 

• Transportability 
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Storage 
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System 

Economics 

An approach to develop and determine whether a 
TC suitable for TES has been established 

• Suitable system design  

- reactor design(s) 

- process definition 

- solar-process integration design 

Introduction 



GA led two thermochemical energy storage 

projects that are supported by DOE 

1. Solid Oxide Based Thermochemical Heat 

Storage*  

(DOE Advance TES program DE-FG-36-

08GO18145 ) 

2. Sulfur Based Thermochemical Heat Storage for 

Baseload*  

(DOE Baseload program DE-EE0003588) 
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* Project partner: German Aerospace Center (DLR) 
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Solar Cavity Packed Bed Reactor 

Rankine cycle 

HX 

T high 

On sun 

Off sun MO  + xO2 → MO2x+1      exo. (discharge)  

MO2x+1 → MO  + xO2        endo. (charge) 

T low 

T middle 

T amb 

• The heat transfer fluid 

(HTF) is also the reactant 

e.g. Air (O2 ), CO2 & H2O 

• Open System – no 
storage of HTF: oxides 

• Closed System – HTF 

storage required: 

carbonates, hydroxides  

T high  > T REDOX > T middle > T low > > T amb 

 

HTF 

A pair of solid oxide REDOX reactions were used to 
store and release heat  
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Solid Oxide TES 
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Preliminary economics can be estimated through  
energy related costs 

• Low raw material cost is required for large scale use  

• Energy related costs include raw materials, storage 

and process cost etc.  

DOE 

target  

Solid Oxide TES 



Reaction HSC Temp (°C) Exp Temp (°C) Re-oxidation  

2PbO2 → 2PbO + O2 405  NA NO 

2Sb2O5 → 2Sb2O4 + O2 515  NA NO 

4MnO2 → 2Mn2O3 + O2  530  NA NO 

2BaO2 → 2BaO + O2 780  690 YES* 

2Co3O4  →6CoO + O2 900  870 YES 

6Mn2O3 → 4Mn3O4 + O2 900  900 YES* 

4CuO → 2Cu2O + O2 1025  1030 YES 

6Fe2O3 → 4Fe3O4 + O2 1300 1200 YES 

2V2O5 → 2V2O4 + O2 1325  750* YES* 

2Mn3O4 → 6MnO+ O2 1500  1400 YES 

• Re-oxidation can be slow, especially at low temp 

• Reaction kinetics needed to be improved 

Thermal reduction takes place readily in all 

candidate oxides  
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* incomplete 

Solid Oxide TES 



Reaction 
Full Re-

oxidation 

Cyclic 

Repeatability 

2BaO2 → 2BaO + O2 No Yes 

2Co3O4  →6CoO + O2 Yes Yes 

6Mn2O3 → 4Mn3O4 + O2 No No 

4CuO → 2Cu2O + O2 No No 

Four oxides underwent REDOX between 700-1100°C 

but only CoO demonstrated full re-oxidation 

10 

Co3O4 

CoO 

Co3O4 

Solid Oxide TES 



Doping  
Max Re-

oxidation (%) 

Fe2O3 100 

ZrO2  42 

CuO 25 

None 6 

Secondary oxide addition was used to improve re-
oxidation kinetics of manganese oxides 

• Full re-oxidation and cyclic repeatability were 

achieved with a 10wt%Fe2O3 addition 

• REDOX reaction kinetics were obtained from 

laboratory measurements 

Mn3O4 

Mn2O3 Mn2O3 
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Thermal charging/discharging in a packed bed was 

demonstrated in the laboratory 

• A materials compatibility study was carried out 

• Process modeling was conducted using preliminary 

design and kinetics data 

• Modeling data was used for final reactor design 

 

CoO 

 

Co3O4 
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Modeling results show pressure drop has significant 
impact on efficiency, process and reactor designs  

• Higher inlet air temp is 
required (+300°C> eq) 

• Larger pellets are 

necessary 

• Multiple reactors are 

needed 

• Indirect heat transfer is not suitable when high 

mass flow rates are required 

• A directly irradiated design is preferred 

Solid Oxide TES 

F. Schaube in GA Report A27230 
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A directly irradiated moving bed reactor design 

was adapted 

• REDOX kinetics was much 

faster in a moving bed 

• Maximize heat transfer rate 

to fully utilize solar heat 

reduction re-oxidation 

A rotary kiln (moving bed) reactor  

Solid Oxide TES 

M. Neises et al, Solar Energy (2012) 



• Material cost is the main driver of TES economics 

• Mixed oxides greatly improve REDOX kinetics 

and cyclic repeatability 

• A moving bed reactor is required to minimize 

parasitic cost  
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REDOX of solid oxide is applicable to thermochemical 

energy storage for CSP 

Solid Oxide TES (Summary) 

DOE Metric Unit 2015 Mn-Fe Co-Al 

Storage Cost $/kWh 15 15-35 50-100 

LCOE $/kWh 0.06 0.09-0.11* 0.13-0.17* 

Efficiency % 93 >93 >93 

*SAM (NREL) using 2010 costs 
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 Reaction Temp (
 

C) 

H2SO4 Decomposition 2H2SO4 → 2H2O(g) + O2(g) + 2SO2(g)  800 

SO2 Disproportionation 2H2O(l) + 3SO2(g) → 2H2SO4(aq)+ S(l) 150 

Sulfur Combustion S(s,l) + O2(g) → SO2(g) 1200 

Solar energy can be stored in elemental sulfur via a 

three step thermochemical cycle 

Sulfur Based TES 



Preliminary economics was assessed using a 

simplified process flowsheet 
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DOE Metric Capacity Factor LCOE  (¢/kWhe) 

SunShot Target 75% 6.0 

CSP w/Sulfur Storage >75% 8.7* 

• maximize solar 

capacity 

• diurnal and seasonal 
energy storage 

• constant daily/ year 

round power supply 

• Brayton or combined 

cycle 

• environmentally friendly 

Sulfur Based TES 

*SAM (NREL) using 2010 costs 
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Disproportionaton 

Reaction Modeling 

Verify Process 

Feasibility  

•Improve kinetics 

•Catalyst 

•Sulfur Extraction 

GO  

NOGO 

Flowsheet 

Process 

Pathways 

Comparison 

System Design 

CSP Plant 

Performance 

Capacity Factor 

LCOE 

Phase I – Determine the TC limits and address key 
process and design issues 

Decomposition 

Decomposer 

Selection 

On Sun and 

Materials Testing 

• Determine the thermodynamic limits for 

SO2 disproportionation 

• Maximize sulfur generation kinetics 

• Establish a baseline system design – 

decomposer and materials compatibility 

Sulfur Based TES 
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Effect of temperature and pressure on sulfur 
generation and H2SO4 conc. was modeled 

• Results guided experimental work 

• Data used for process and flowsheet designs 

• Low temperature and 

high pressure favor sulfur 
formation and high H2SO4 

conc. 

Parameters Range 

Temp 120-150°C 

Pressure >10 bar 

H2O/SO2 2 to 4 

H2SO4 conc. 62wt% 

Sulfur Based TES 
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Disproportionation kinetics was greatly enhanced with 
the use of catalyst 

• Kinetics data defined reactor size and process cond. 

• Means for sulfur extraction and catalyst recovery were 

established via laboratory work 

• All processing steps for SO2 disproportionation have 

been determined 

Sulfur Based TES 
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Sulfuric acid decomposition was demonstrated on sun 
using a solar furnace 

A dual chamber H2SO4 decomposer  

Conceptual scale up of a modular 

decomposer on a solar tower 

• Process and decomposer 

refinement based on test data 

• Lower decomp. temperature to 

reduce solar installation cost 

Sulfur Based TES 

D. Thomey et al., Int. Journal of Hydrogen 

Energy (2012) 
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A detailed flowsheet was established based on 
modeling and experimental data from Phase I 

• Plant design incorporated established processes from 

sulfuric acid manufacturing plant 

DOE Metric LCOE (¢/kWhe) 

SunShot 6.0 

CSP w/Sulfur 

Storage 
8.1* 

• Storage cost is 

 < $2/kWh 

• LCOE is ~6¢/kWhe 

based on proposed 

SunShot targets 

Sulfur Based TES (Summary) 

*SAM (NREL) using 2012 costs 
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Conclusions 

• Chemical energy storage is well suited to CSP 

• Energy related costs (materials and storage) need 

to be low  

• Reaction kinetics of low temperature step can be a 

show stopper – improve kinetics 

• Maximize process compatibility with solar reactor 

design – direct irradiation is preferred and always 

be beware of parasitic costs 

• Maximize solar heat utilization and minimize solar 

installation cost in process and system designs 

• When possible, incorporate established processes 

into your system design     


