
Development of a High Efficiency Hot Gas Turbo-expander and Low Cost Heat Exchangers for Optimized CSP Supercritical CO₂ Operation

Southwest Research Institute Award # DE-EE0005804 Phase I – Quarter 2 April 23, 2013

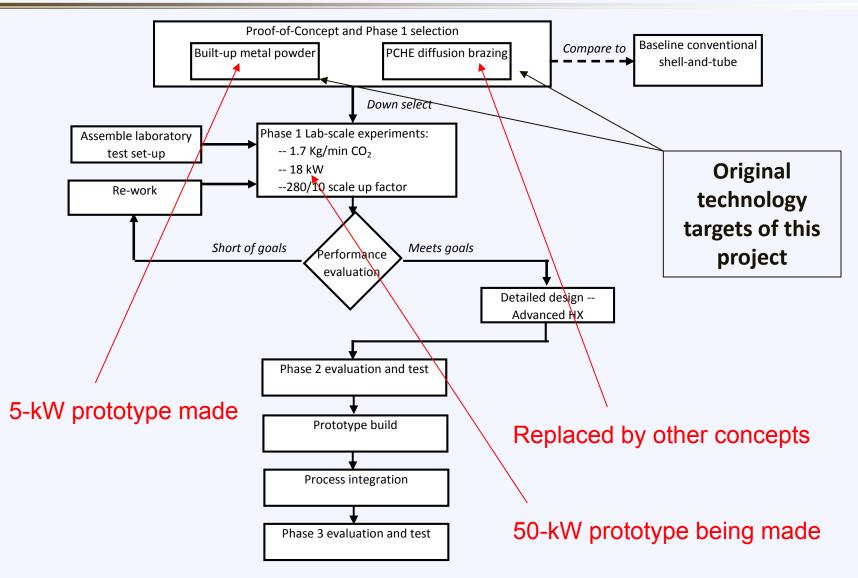
DOE Phase Funding: \$1,877,015 Cost-Share Phase Funding: \$961,649 Principal Investigator: Dr. Jeff Moore Other Contributors: General Electric

Thar

Knolls Atomic Power Lab

Project Objectives

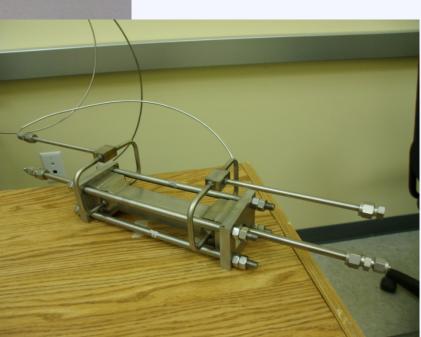
- To develop a novel, high-efficiency supercritical sCO₂ turbo-expander optimized for the highly transient solar power plant duty cycle profile.
 - This MW-scale design advances the state-of-the-art of sCO₂ turbo-expanders from TRL3 to TRL6.
- To optimize compact heat exchangers for sCO₂ applications to drastically reduce their manufacturing costs.
- The turbo-expander and heat exchanger will be tested in a 1-MWe test loop fabricated to demonstrate component performance and endurance.
- The scalable sCO₂ expander design and improved heat exchanger address and close two critical technology gaps required for an optimized CSP sCO₂ power plant and provide a major stepping stone on the pathway to achieving CSP power at \$0.06/kW-hr levelized cost of electricity (LCOE), increasing energy conversion efficiency to greater than 50% and reducing total power block cost to below \$1,200/kW installed.



Project Approach

- Work has been divided into three phases that emulate development process from TRL3 to TRL6
- Phase I Turbomachinery, HX, and flow loop design (18 months)
- Phase II Component fabrication and test loop commissioning (12 months)
- Phase III Performance and endurance testing (6 months)

Heat Exchanger Design – Changes to Scope



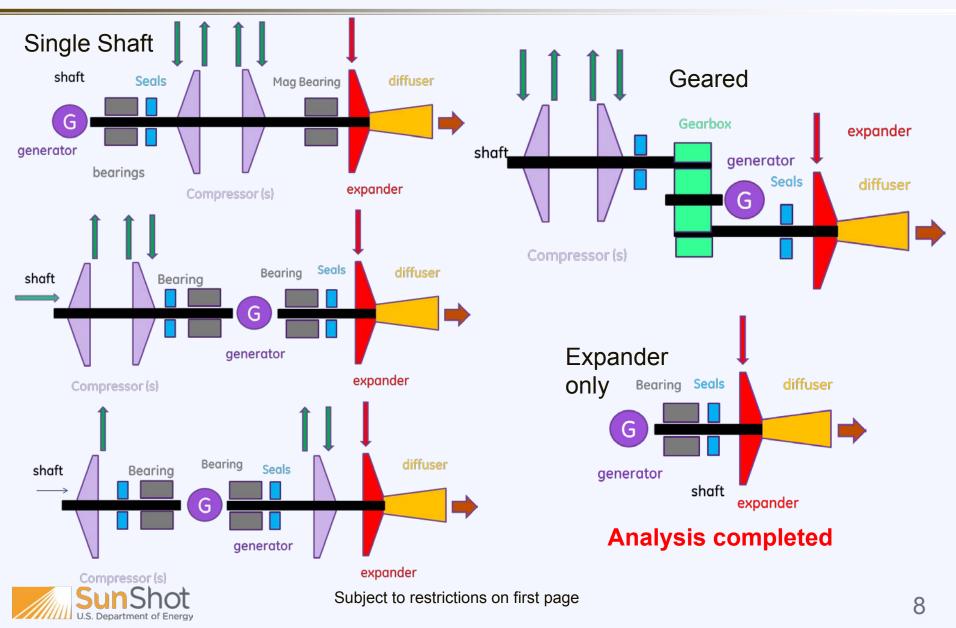
5-kW DMLS Prototype

Expensive and slow to build -- but highly automated

Pressure tested to 7,250 psi Performance testing ongoing at KAPL

Second Prototype

- Key Figures of Merit:
 - Areal density greater than 1,500 m2/m3
 - Cost less than \$50 kWt
 - Opacity (cross-sectional metal area) less than 35%
- Design concept
 - Not diffusion bonded PCHE
 - Automated manufacturing
 - Retains checkerboard flow concept of Prototype I
 - No cross-flow pattern; all counter-flow
 - Unique header configuration


Turbomachinery Concepts

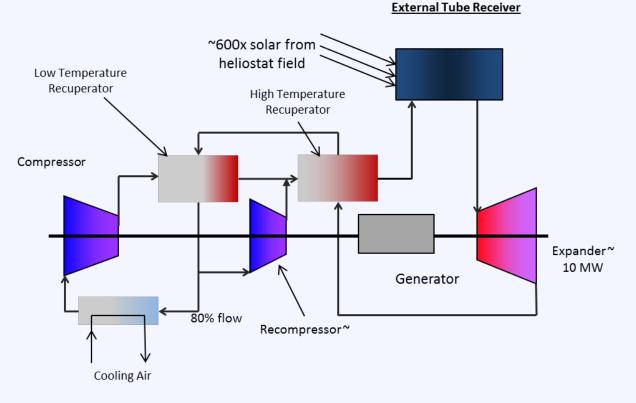
 Concepts being explored include high-speed, low-speed, and geared layouts.

Option	Generator	Compressor	Turbine	RPM
High-speed, Optimal	A. IC B. PM	A. Single-stage centrifugal B. Multi-stage pump	A. Radial B. Axial	Optimized for compressor
High-speed, expander only	A. IC B. PM	None	A. Radial B. Axial	Optimized for expander
High speed, Geared	A. IC B. PM C. 3,600 rpm	A. Single-stage centrifugal B. Multi-stage pump	A. Radial B. Axial	Both expander and compressor run at optimal speed
3,600 rpm – integrated	3,600 rpm	Multi-stage pump or compressor	Multi-stage Axial at 3,600 rpm	3,600 rpm
3,600 rpm – expander only	3,600 rpm	None	Multi-stage Axial at 3,600 rpm	3,600 rpm

Turbomachinery Concepts

Generator Design

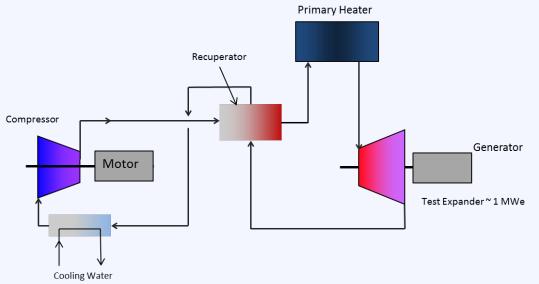
- Low-speed Synchronous
 - Low cost
 - Commercially available
 - Need to be combined with gearbox
- High-speed
 - May drive turbomachinery directly or use small gearbox if needed
 - Limited to 20,000 rpm
 - Lighter than low-speed option
 - More expensive



Test Loop Design

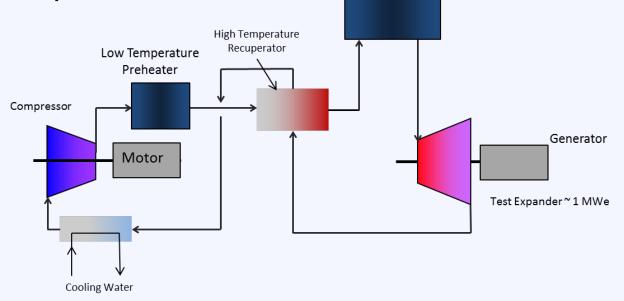
Recompression Supercritical CO₂ Cycle Model

The proposed CSP system uses sCO_2 as both, the heat transfer fluid and the working fluid.


Note: Wet cooling is used to use existing heat exchanger.

Test Loop Design

 First configuration was a simple cycle with a primary recuperator and an external heater (electric or gas fired) to provide high temperature and high pressure CO₂



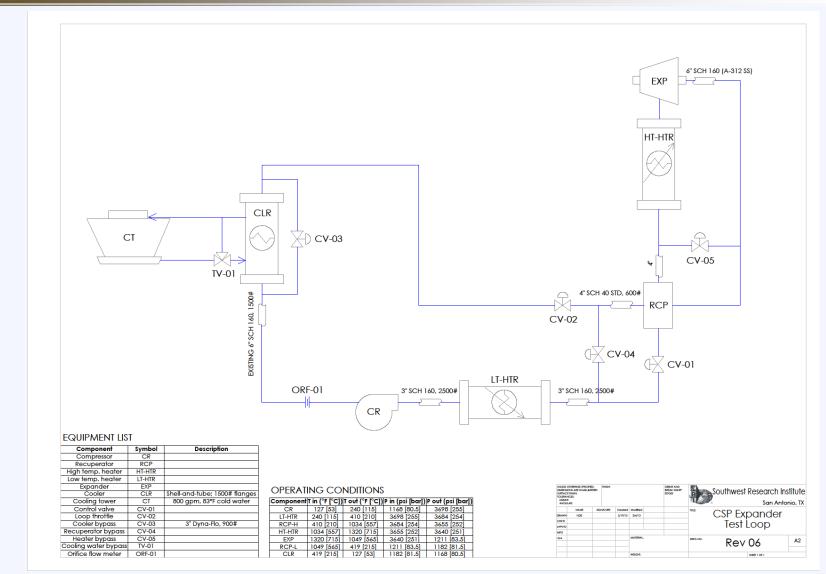
- Limited flexibility with respect to recuperator testing.
- It may not be possible to replicate exactly the conditions of the high-temperature recuperator in the recompression cycle.

Test Loop Design

- A low-temperature heater is added before the recuperator to replicate the recompression loop and low temperature recuperator.
- This significantly extends the recuperator test conditions while providing a reliable test environment for the I MWe scale expander.

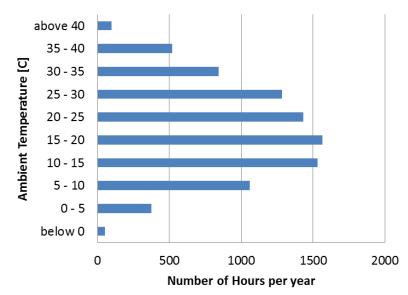
Equipment Procurement

- Supercritical CO₂ pump/compressor
 - Contacted several companies to obtain quotes
 - Several pump companies indicated our conditions were outside the capabilities of their current products
 - Recommend to reduce temperature or increase inlet pressure
 - Need to consider impact in the cycle
 - Also considering integrating compressor into the turbine design

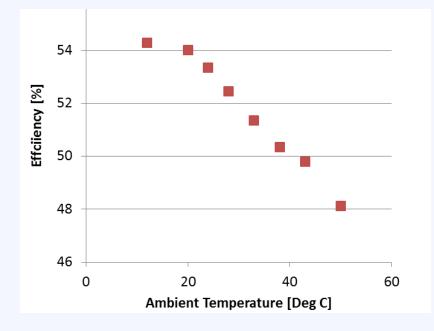

Equipment Procurement

Heater

- heat CO₂ from 1000-1200 F at 4500 psi
- Resistive heaters:
 - \odot Screen heaters available up to 2500 F/ 5000 psi
 - \circ Heater and power conditioner are expensive
- Electric heaters may require some R&D effort to work with sCO2
- Gas fired solution may be less expensive and is being investigated


P&ID

Thermo-economic Cycle Analysis


- Initial assessment uses Dagget, CA as the possible location for a CSP plant.
- For cooling purposes, the program calls for air at 43 C to achieve 50% efficiency.
- However, 24 C is a more realistic temperature for this location
 Hourly Temperature Distribution for Daggett, CA

Thermo-economic Cycle Analysis

- At 24 C, the power block will have an efficiency of 54%
- At 43 C, the efficiency will be 50%, thus meeting the program goals

Future Work

- Test heat exchanger prototypes
- Heat exchanger CFD
- Down-select Turbomachinery Layout
- Complete Aero design
- Procure long lead items for expander and test loop
- Finalize test loop design

