

Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials October 2012 – September 2015

Judith Gomez, PhD (NREL) - PI Mark Anderson (University of Wisconsin) Alan Kruizenga (Sandia)

SunShot CSP Program Review 2013 Hilton Phoenix East/Mesa Phoenix, AZ | April 23-25, 2013

Project Objectives

- Acquire understanding of fundamental degradation mechanisms of materials in molten salts, liquid aluminum alloys and supercritical CO₂ to design and evaluate potential coatings and/or surface modification techniques.
- Extend the lifetime of containment materials and thus reduce capital and maintenance costs.
- Develop and evaluate advanced protective coatings and surface modification techniques to achieve degradation rates lower than 30 µm/year, i.e., a material lifetime of 30 years.

Innovation

- Gain fundamental knowledge of degradation mechanisms in aggressive fluids at high temperatures.
- Develop protective coatings and working conditions for materials in contact with aggressive high temperature TES fluids and HTFs at the SunShot-relevant temperatures of 600 to 900°C.
- Develop coatings with low wettability by working fluids.
 Contact angles are measured at high temperatures under controlled atmospheres.

Technical Approach

- For molten salt corrosion, electrochemical techniques are employed to understand and control the hot corrosion mechanisms.
- Liquid aluminum alloys degradation are evaluated using immersion techniques.
- For supercritical CO₂ attack, autoclave and flow corrosion tests are used.
- First-principles molecular dynamics modeling is used to identify alloying elements that strengthen the grain boundaries and prevent metal embrittlement.
- Coatings are prepared and characterized for adhesion, wettability, and chemical qualitative analyses before degradation tests.

Project Tasks per Period

Phase 1 (FY13)

- Task 1.1: Identification and characterization of candidate protective coatings for particular molten salts and liquid metal alloys.
- Task 1.2: Electrochemical characterization of the substrate candidates.
- Task 1.3: Determine the effects of impurities in supercritical CO₂ on corrosion rates of different alloys (University of Wisconsin).

Phase 2 (FY14)

- Task 2.1: Electrochemical evaluation of coatings in molten salts.
- Task 2.2: Degradation evaluation of ceramic coatings in aluminum liquid metal alloys (LMA).
- Task 2.3: Study of surface treated materials and surface modification for performance improvement in s-CO₂ (University of Wisconsin).

Project Tasks per Period

Phase 3 (FY15)

- Task 3.1: Determination of re-deposition characteristics of Si coatings in the Al-Si eutectic alloy.
- Task 3.2: Fundamentals of degradation mechanisms of coated materials in aluminum liquid metal alloys (LMA).
- Task 3.3: Fundamentals of hot corrosion mechanisms of coated materials in molten salts.
- Task 3.4: Perform flow assisted corrosion tests and develop mechanistic corrosion model for alloys in s-CO2 in the presence of different impurities (University of Wisconsin).

Task I.I: Methodology and Approach

- Selection of the fluids was performed using FactSage modeling, laboratory testing and results from previous work.
- Selection of the coating candidates was completed after evaluating current technologies applied to turbine blades and liquid aluminum containment materials.
- The wettability instrument was designed after evaluating current technologies.
- In the density-functional theory (DFT) simulations for liquid metal embrittlement, the total energies of grain boundaries (GBs) and GB-stabilized impurity phases were calculated.

<u>**Proposed fluids</u>**: Candidate molten salts and metal alloys have been prioritized in the following list for HTFs, and phase change material (PCM) for TES.</u>

- 1. $K_2CO_3 53.82 \text{ wt\% Na}_2CO_3$ (PCM)
- 2. NaCl 65.58 wt% LiCl (HTF)
- 3. $Na_2CO_3 40.55 \text{ wt}\%NaCl (PCM)$
- 4. Al-12.2 wt%Si (PCM for S-CO₂ system)
- 5. Al-51.42 wt%Mg (HTF)

Substrates to be evaluated in the electrochemical cell:

• High steel alloys, nickel superalloys and alumina forming alloys.

Proposed coating design process:

- A bond coat with similar composition to the substrate.
- Deposition of an outer layer of aluminum and controlled oxidation/annealing to form alumina.
- After step 2, deposition of alumina, aluminosilicate, or silica top coat .

Candidate coating deposition technologies:

- Sputtering, e-beam, and/or ion-beam assisted deposition will be used at NREL for preliminary coatings to evaluate adhesion and chemical qualitative behavior.
- For commercial applications plasma spray and/or highvelocity oxy-fuel.

Goniometer for contact angle measurements (wettability)

• 14" long split tubular furnace with air-tight quartz tube with inlet and outlet gas ports.

• Optics to give 13.5" working distance and 8.8mm x 6.5mm field of view (FOV).

Goniometer for contact angle measurements (wettability)

- Images are processed using DropSnake software that utilizes the B-spline snake method [A. Stalder, et al. (2006). Colloids and Surfaces A, 286: 92].
- Instrument is being qualified using systems with known wettability to develop measurement protocols.

DI water on sapphire, room temperature, N_2 atmosphere.

N₂ atmosphere.

Microscopic origin of Bi bilayer phases stability

For the known system Bi-Ni, bismuth induces embrittlement in Ni grain boundaries (GB) because of the formation of Bi bilayer (BL) phases. The calculated bond strength of the Bi-Ni interfacial bonds for the bilayer was sufficiently larger than for the monolayer (ML).

Bismuth bilayer Atomic dipoles at the Bi atoms due to Bi-Ni interaction Bismuth monolayer No atomic dipoles due to the symmetric Ni-Bi bond configuration By forming the atomic dipoles at the Bi atoms, the Bi-Ni bond strength of the bilayer becomes enhanced by 24% as compared to that of the monolayer.

Modeling: Summary of Results to date

- Boron is being considered as an embrittlement preventing impurity in polycrystalline Ni.
- Boron atoms can be dissolved in the Ni matrix as substitution defect in nickel lattice positions $(B_{[Ni]})$ or as interstitial impurity atoms $(B_{[i]})$
- Calculations were performed on Ni twist GB with θ =21.8° and Ni tilt GB with Σ=5. The same trend was observed.
- \odot Formation energy of B impurities for $\mu_{Ni}=\mu_{Ni}(\text{bulk})$ and $\mu_{B}=\mu_{B}(B_{[i]}$ in Ni)

The B impurities in polycrystalline Ni exist as interstitial defects, which will be segregated into the GB region by annealing.

Modeling: Summary of Results to date

B density (atoms/nm²)

- Negative formation energy (i.e., B_(i) segregation at GBs).
- B density at GB estimated to be around 15 atoms/nm².
- Positive formation energy for B bilayer phase (unstable).

- B segregation significantly enhances the cohesion energy of Ni GBs.
- The improved adhesive property of Ni GBs will prevent the formation of impurity bilayer phases and associated GB embrittlement.

Task I.2: Electrochemical characterization of the substrate candidates

1: crucible furnace, 2:silica liner, 3: three-electrode arrangement, 4: molten salt, 5: alumina crucible, 6: thermocouple, 7: furnace controller with overtemperature control, 8: potentiostat/powersupply, 9: purge gas inlet, 10: argon tank, 11: offgas outlet, 12: chlorine compounds trap, 13: water removal trap, 14: water reflux trap, 15: alkaline scrubber, 16: exhaust gases, and 17: thermocouple for overheating control

- 1: stainless steel chamber with silica lining;
- 2: working electrode (sample) electrical connector;
- 3: platinum reference electrode;
- 4: platinum counter electrode;
- 5: alumina crucible;
- 6: encapsulated working electrode;
- 7: radiation shield
 - 1: Coated Sample
 - (disk 8 mm dia. x 8 mm height)
 - 2: Wire for electrical connection
 - 3: Quartz for encapsulation
 - 4: Wire spot welded to the back of disk/coupon
 - 5: High temperature ceramic cement

Energy Systems Integration Facility (ESIF)

Task I.3: Effect of Gas Purity on S-CO₂ Corrosion (University of Wisconsin-Madison)

Autoclave corrosion testing at 650°C, 20 MPa in pure (research), industrial and bone grade S-CO₂.

Task I.3: Summary of Results to date

- All candidate alloys tested at 650°C and 20 MPa using industrial grade CO₂ showed lower levels of weight gain compared to research grade CO₂.
 - Some impurities could be acting as slight corrosion inhibitors.
- SEM and optical imaging analyses are being performed to evaluate the morphology and chemical elements of the oxidation layer.
- Since it is likely that any plant operation would use industrial grade gas, results seem promising.

Measured weight gains (mg/cm²) after 200 hours in S-CO₂ at 650°C and 20 MPa (Average \pm Uncertainty at 95% Confidence).

Test #	Gas Purity	Temp (°C)	Pressure (MPa)	Exposure Time (hrs)	<u>Mat'l 1</u> 347SS	<u>Mat'l 2</u> IN800H	<u>Mat'l 3</u> AFA-OC6	<u>Mat'l 4</u> 316L	<u>Mat'l 5</u> Haynes 230
1	Research Grade CO_2 (99.9998%)	650	20	200	0.072 ± 0.005	0.101 ± 0.010	0.096 ± 0.012	-	-
2	Industrial Grade CO ₂ (99.85%)	650	20	200	0.051 ± 0.017	0.079 ± 0.010	0.011 ± 0.033	0.127 ± 0.022	0.024 ± 0.008

Barriers and Mitigation in Phase I

Deposition of crystalline alpha (α) alumina (Al₂O₃) top coat.

- Mitigation: Preliminary tests will be performed to define deposition conditions of α -Al₂O₃ or annealing conditions to transform deposited coating.
- S-CO₂ corrosion for short durations does not give much indication of weight change.
 - Mitigation: Investigate oxidation layer with SEM and optical techniques. Oxidation layers are pretty thin with these alloys which is a good indication that they will work.
- It may be difficult to determine which species of impurity is mitigating S-CO₂ corrosion.
 - Mitigation: If there are changes in the oxide layer this might give some clues.

Future Work

- Qualify hot corrosion electrochemical system and calibrate reference electrode for a specific molten salt system.
- Conduct electrochemical testing on four bare substrates (310SS, 347SS, 800H and Inconel 625) and conduct metallographic characterization of substrates before and after molten salt interaction.
- Design and construct chemical cell for liquid alloys degradation studies.
- Synthesize candidate ceramic and/or metallic coatings and perform exploratory down selection of coatings based on adhesion and chemical qualitative tests.
- Identify the role of H₂O, CO, O₂, and hydrocarbon impurities on corrosion. Investigate the effect of different water concentrations and the role of other impurities (identified by Sandia National Laboratories) on the corrosion by S-CO₂.

Degradation Mechanisms and Development of Protective Coatings for TES and HTF Containment Materials

National Renewable Energy Laboratory NREL_Gomez_A

Principal Investigator Dr. Judith Gomez Other Contributors

- Dr. Mark Anderson
 University of Wisconsin
- Dr. Alan Kruizenga
 Sandia National Laboratories

eSolar Sierra SunTower power tower plant. Source: NREL

Supportive Slides

Coating Deposition at NREL

- Aluminum preliminary trials are being performed in the "three-chamber" deposition system.
- Thermal oxidation and annealing of Al at high temperatures is being evaluated to produce alumina.
- Deposition process for crystalline alumina is under study.
- The "five-chamber" system is being installed to perform depositions of metallic bond coat and alumina top coat.

Impurities of Interest for the Modeling Effort

Representative Alloy	Principal Alloy Element	Low- Concentration Alloy Elements	Common Impurities	Embrittlement Causing Impurities	Embrittlement Preventing Impurities	Representative Elements for Modeling LME	
IN625	Ni	Co, Mo, Nb, Ti, Al, C, Mn, Si	S, P	S, P	В	Ni matrix with	
IN800H	Ni	Ti, Al, C, Mn, Si	S, P, Cu	S, P	В	Bi, B, S, P, and Bi-B impurities	
310SS	Fe	C, Mn, Si	S, P, Sn	S, P, Sn	В		
347SS	Fe	C, Mn, Si, Nb	S, P, Sn, Cu	S, P, Sn	В	Fe matrix with B, S, P, and Sn impurities	
AFA-OC6	Fe	C, Mn, Si, P, S, Nb, Cu, Mo, W, Ti, V, N, B	S, P, N, Cu	S, P	В		

Task I.3: Test Matrix

Task	34788	800H	AFA-OC6	# of samples
1.3.1	Industrial grade CO ₂ max impurity levels	Industrial grade CO ₂ max impurity levels	Industrial grade CO ₂ max impurity levels	9
1.3.1	Bone Dry CO ₂ max impurity levels	Bone Dry CO ₂ max impurity levels	Bone Dry CO ₂ max impurity levels	9
1.3.1	Research Grade max impurity levels	Research Grade max impurity levels	Research Grade max impurity levels	9
1.3.1	RG w 50ppm H ₂ O	RG w 50ppm H ₂ O	RG w 50ppm H ₂ O	9
1.3.1	RG w 75ppm H ₂ O	RG w 75ppm H ₂ O	RG w 75ppm H ₂ O	9
1.3.1	RG w 100ppm H ₂ O	RG w 100ppm H ₂ O	RG w 100ppm H ₂ O	9
1.3.1	RG w 1000ppm H ₂ O	RG w 1000ppm H ₂ O	RG w 1000ppm H ₂ O	9
1.3.2	SNL impurity level test	SNL impurity level test	SNI impurity level test	9
1.3.2	SNL specific impurity at 50% level	SNL specific impurity at 50% level	SNL specific impurity at 50% level	9
1.3.2	SNL specific impurity at 150% or solubility limit	SNL specific impurity at 150% or solubility limit	SNL specific impurity at 150% or solubility limit	9
2.3.1		3		
2.3.1		3		
2.3.2	Grain re	3		
3.4.1	Flow	alloy	3	
3.4.1	Flow testing wit	3		