
Geothermal Technologies Office 2013 Peer Review

Energy Efficiency & Renewable Energy

Impact of mineral reactions on shear zone permeability is uncertain at EGS conditions because key rate reactions are unknown

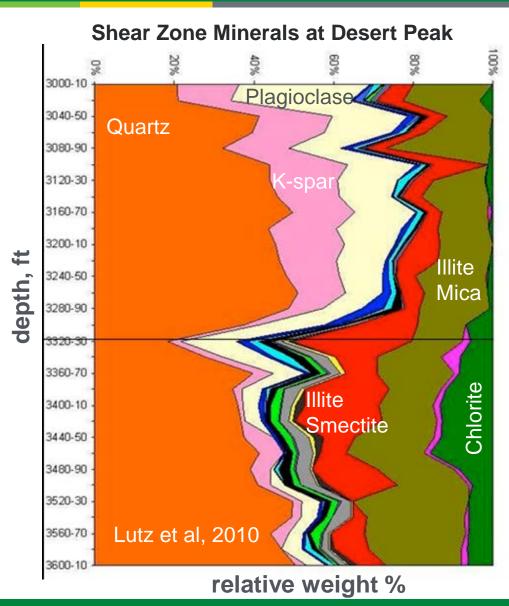
Increased fracture permeability after reaction with CO_2 -brine at 200°C (Smith et al, 2013)

The Viability of Sustainable, Self-Propping Shear Zones in Enhanced Geothermal Systems: Measurement of **Reaction Rates at Elevated Temperatures**

Project Officer: Dan King; Total Project Funding: \$1,100,000

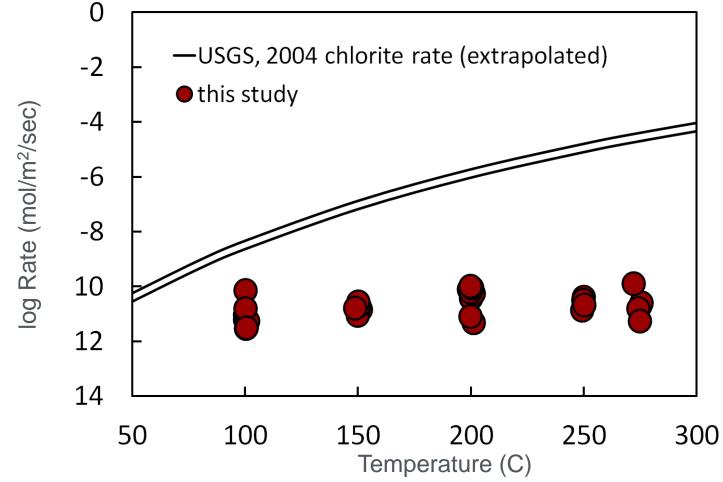
April 24, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.


Susan Carroll Lawrence Livermore National Laboratory

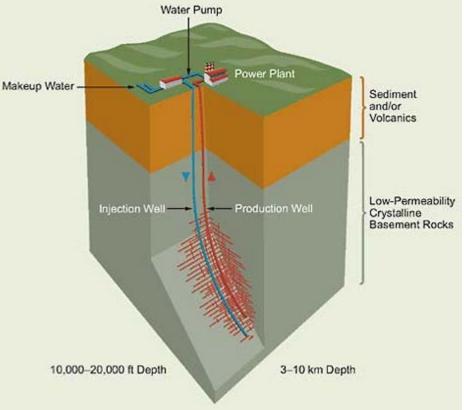
Track 1 - Geochemistry

Relevance/Impact of Research


- Proposed Technology Improvement: Expand geochemical kinetic database for fracture minerals identified in EGS shear stimulation zones to 300°C.
- Current Technology Baseline Specifications: Current kinetic data and rate equations are lacking for many shear zone minerals at EGS temperatures and are rare even to 100°C.

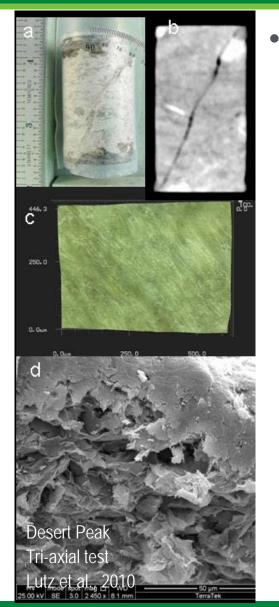
Relevance/Impact of Research

• Extrapolation of low-temperature rate equations to EGS conditions may result in large errors

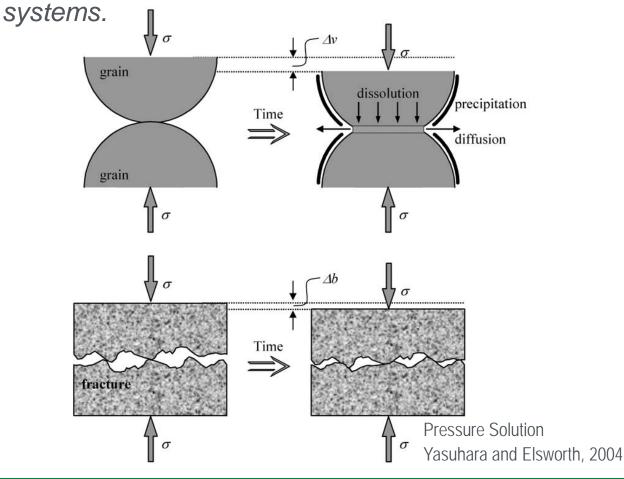


GTO Goal: Enhanced Geothermal Systems

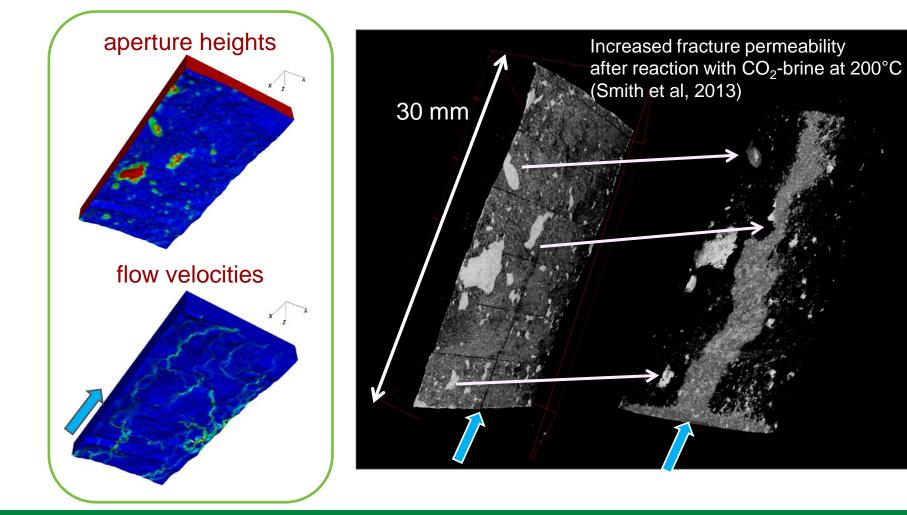
- **ENERGY** Energy Efficiency & Renewable Energy
- Target Technology Specifications: Results will allow chemical affects to be included in modeling, allow realistic estimates of risk from chemical reactions, and assist in designing economically viable EGS systems.
- Rate equation
 - Temperature
 - рН
 - Solution chemistry
 - Surface area


Rate (mol mineral s^{-1})

 $= -S(k_{298.15,acid} \{H^+\}^n + k_{298.15,neutral} + k_{298.15,alkaline} \{OH^-\}^m) e^{-\frac{E}{R}(\frac{1}{T} - \frac{1}{298.15})} \left(1 - \frac{Q}{K}\right)$



GTO Goal: Enhanced Geothermal Systems


Kinetic data are critical to linking geochemical and mechanical process responsible for sustaining shear zone permeability for EGS

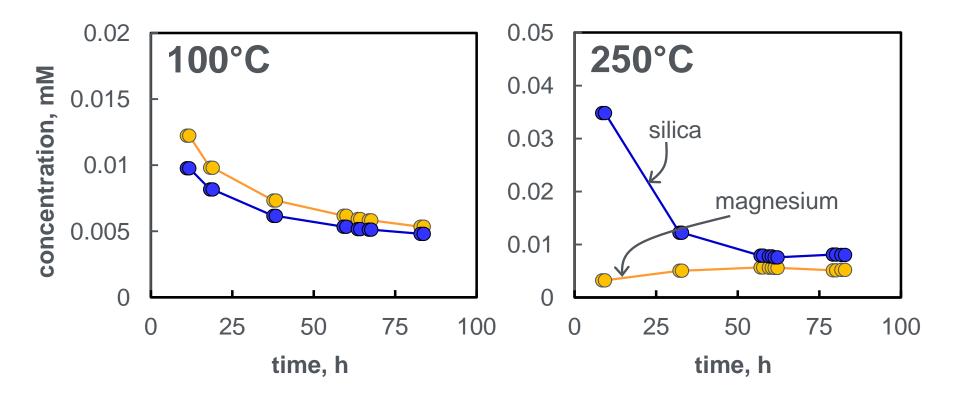
GTO Goal: Enhanced Geothermal Systems

ENERGY Energy Efficiency & Renewable Energy

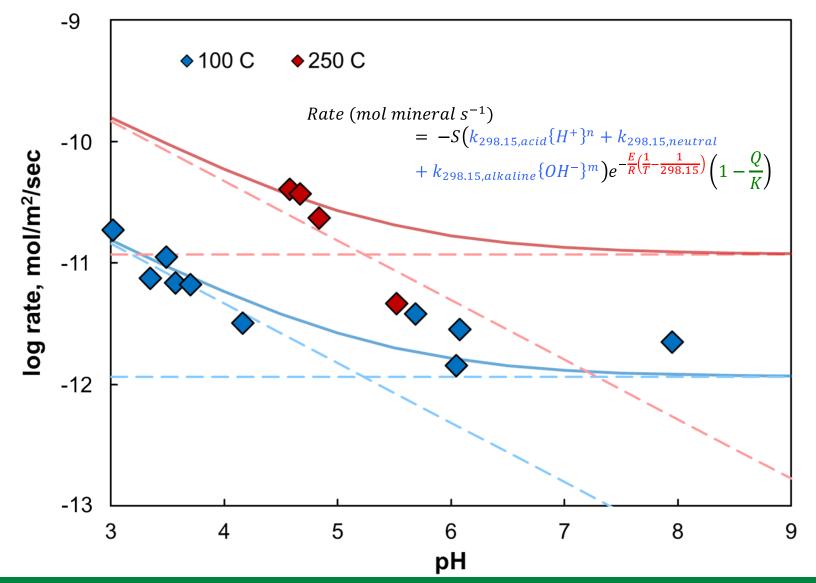
• Kinetic data are critical to designing and optimizing shear zone permeability for EGS systems.

Scientific/Technical Approach

- Measure dissolution rates for shear zone minerals in mixed flow reactors
 - biotite, chlorite, illite, smectite, and plagioclase dissolution rates
 - pH 3 10
 - 100 300°C
 - Desert Peak, Raft River, Bradys Hot Spring (~200°C)
 - Newberry (200-300°C)
- Derive dissolution rate equations to be used in reactive-transport simulations


Rate (mol mineral s^{-1})

$$= -S(k_{298,15,acid}\{H^+\}^n + k_{298,15,neutral} + k_{298,15,alkaline}\{OH^-\}^m)e^{-\frac{E}{R}(\frac{1}{T} - \frac{1}{298,15})}\left(1 - \frac{Q}{R}\right)$$


• Rate ~ Δ [solution composition] x flow rate / surface area

Results for Chlorite dissolution (March 15, 2013)

Energy Efficiency & Renewable Energy

Original Planned Milestone/ Technical Accomplishment	Minerals	Date Completed
1.0 Measure and derive mineral dissolution rates (pH,T)	FY13: Chlorite and illite	On schedule
2.0 Measure and derive mineral dissolution rates (pH,T)	FY14: Biotite and Plagioclase	
3.0 Measure and derive mineral dissolution rates (pH,T)	FY15: Smectite	
4.0 Conduct experiments using core from EGS demonstration site	Pending funding	

Future Directions

ENERGY | Energy Efficiency & Renewable Energy

- Key activities for FY13 and to project completion
 - Chlorite, illite, smectite, and biotite, dissolution rates
 - All important shear zone minerals at EGS demonstration sites
 - Conduct experiments on core samples from EGS sites (pending funding)
- Deployment strategy for Geothermal Data Repository
 - Specific mineral dissolution rates will be provided in a spreadsheet files.
 - Governing rate equations will be provided in document files.
 - Data will be generated continually throughout the project and will be uploaded to the DOE-GDR annually on September 30, 2013 - 2015.
- Results will be made available to all EGS demonstration projects and researchers
- There are no "Go/No-Go" milestones
 - Laboratory facility in place (budgeted replacement parts)
 - Solid technical approach and team
 - Carroll geochemist with 30 years expertise and ~ 50 peer-reviewed publication
 - Smith geochemist, postdoc, carries-out experimental programs for geothermal and carbon storage

- Proposed Technology Improvement: Expand geochemical kinetic database for fracture minerals identified in EGS shear stimulation zones to 300°C.
- Current Technology Baseline Specifications: Current kinetic data and rate equations are lacking for shear zone minerals at EGS temperatures and are rare even to 100°C.
- **Target Technology Specifications:** Results will allow chemical affects to be included in modeling, allow realistic estimates of risk from chemical reactions, and assist in designing economically viable EGS systems.
- Justification for AOP: Proposed work addresses critical data gap for EGS development and maintains the experimental core competency in geothermal geochemistry for DOE-Geothermal.

Project Management

Timeline:	Planned Start Date	Planned End Date	Actual Start Date	Actual /Est. End Date		
	10/1/12	9/30/15	10/1/12	9/30/15		
	Federal Share	Cost Share	Planned Expenses	Actual	Value of Work	Funding needed to
Budget:	Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work

• Management activities:

- Monthly review and reporting of project financials and status to LLNL upper management (E Program, Global Security Directorate)
- Rate equations developed by LLNL will be used to interpret the observations from the shear rock experiments by LBNL.
- Project is on schedule