

Synchrotron X-ray Studies of Supercritical Carbon Dioxide / Reservoir Rock Interfaces

May 20, 2010

**Argonne National Laboratory** 

Track Name

#### Relevance/Impact of Research



#### Hypotheses to be tested

- Supercritical CO<sub>2</sub> will not dissolve and transport minerals
- CO<sub>2</sub> will be partially sequestered
  - Calcite, magnesite formation
  - Granite reaction with scCO<sub>2</sub>





- Granite composition (Example)
  - Quartz
  - Feldspar (Orthoclase)
  - Mica (Biotite)

#### Relevance/Impact of Research Supercritical CO<sub>2</sub>/Water Binary Fluids



#### Scientific/Technical Approach

#### ENERGY Energy Efficiency & Renewable Energy







- Window materials: moissanites 1 mm.
- Will explore thinner and more transparent diamond (0.5 mm) windows
- Flow cell design is under way

### Scientific/Technical Approach X-ray Reflectivity --- Specular





## Accomplishments Preliminary results



- The X-ray/pressure cell
- Silica surfaces
- Mica
- Orthoclase

## Proof of Principle Experiment Quartz (0001)





- The surface roughness <1 nm.
- No measurable dissolution or roughening under static scCO<sub>2</sub>-H<sub>2</sub>O

### Intercalation of Water Into Muscovite Under scCO<sub>2</sub>









### Dissolution of Orthoclase Surface



• In scCO<sub>2</sub>-H<sub>2</sub>O, rapid dissolution was observed. (AFM planned)

# Project Management/Coordination Personal/Budget \$650K/yr for 2 yrs



- Staff Effort (\$330K Argonne National Laboratory, MSD)
  - Hoydoo You (25%)
  - Kee-Chul Chang (10%)
  - Daniel Hennessy (50%)
  - Michael Pierce (15%)
- Postdoc (to be hired) 100% (\$100K ANL)
- Subcontract to (\$160K Arizona State University)
  - Hamdallah Béarat School of Mechanical, Aerospace, Chemical and Materials Engineering
- M&S and HB's trips to APS, ANL (\$60K)

#### Project Management/Coordination



- ANL MSD
  - In-house preparation of samples
  - In-house X-ray / AFM characterization
- ANL APS: Beamtime 2 or 3 weeks a year
  - Typically 1 week at a time
  - Beamline 12BM-B or 11ID-D
  - Completed two beam trips by April
  - One more trip is scheduled during Summer
- Arizona State University
  - Cell preparation and modification for beam trips
  - Develop a flow cell
  - HB comes to APS ANL for the beam trips

### Future Directions Expected Outcomes and Progress



- One more synchrotron beamtime with the static cell
- Flow cell will be constructed
- Granite components will be examined in a similar manner as done in the static cell
- Ex situ AFM measurement are planned to complement X-ray work
- In situ search for calcite, magnesite, etc

| Activity Name                |
|------------------------------|
|                              |
| Geothermal Synchroton        |
| Synchroton Work Activities   |
| Granite Prep                 |
| Project Completion           |
| Silica & Feldspar Prep       |
| Granite 100% scCO2           |
| Silica & Feldspar 100% scCO2 |
| Row Cell                     |
| Cell Test                    |
| Granite Flow Cell            |
| Silica & Feldspar How Cell   |
| Project Start                |



#### Summary



- Dry scCO<sub>2</sub> will be an ideal circulating fluid based on our measurements on quartz and orthoclase
- Water, phase separated and carbonated, if present, accelerates orthoclase dissolution
- Intercalation/deintercalation into mica (muscovite)
- Calcite, magnesite, etc, may form but still need more work to measure them in situ
- Some ex situ AFM / SEM measurements are planned
- Flow cell construction will begin on schedule