
#### Geothermal Technologies Program 2013 Peer Review



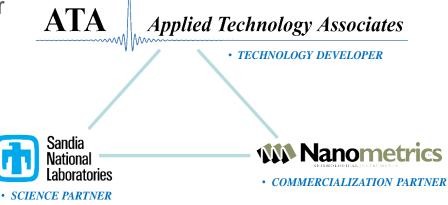
Energy Efficiency & Renewable Energy



Rotation-Enabled 7-DOF Seismometer

April 22-25, 2013

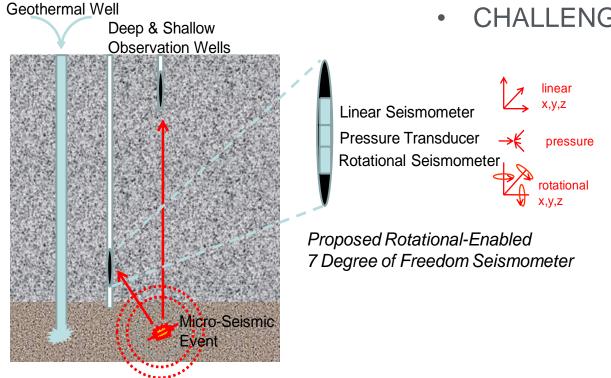
This presentation does not contain any proprietary confidential, or otherwise restricted information.


Principal Investigator: Darren Laughlin Presenter: Dennis Smith Organization: ATA / A-Tech

Track 2 – Ballroom B

# **Project Team**

**ENERGY** Energy Efficiency & Renewable Energy


- Collaboration Partners:
  - Applied Technology Associates (ATA) / A-Tech
    - Technology Developer
    - Prime / Small Business
  - Sandia National Laboratories (SNL)
    - Science Partner
    - FFRDC
  - Nanometrics, Inc.
    - Commercialization Partner
    - International (Canadian)



# Relevance/Impact of Research

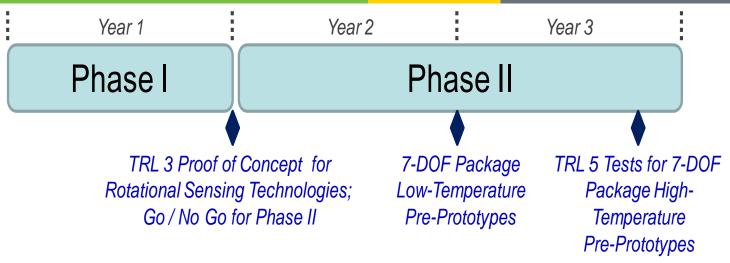


- OBJECTIVE: 7 DOF Seismometer for Geothermal Applications
  - Develop a seismic instrument that measures all seven degrees of freedom of the seismic signal including tri-axial rotational sensing in a package suitable for downhole geothermal environments



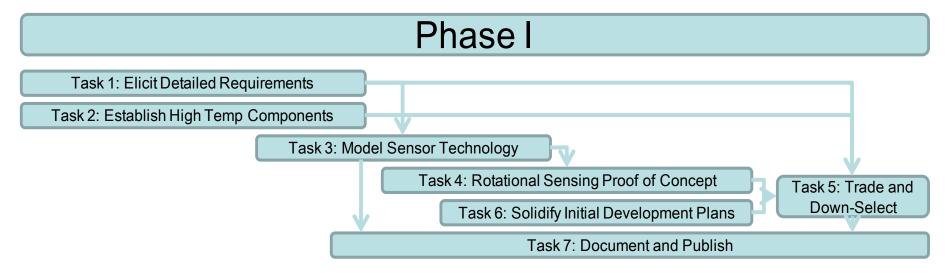
- CHALLENGES Being Addressed:
  - Few if any competent rotational seismic sensors exist even for surface application
  - Nature of rotational signature and relation to crack formation still in research
  - Integrated sensor requires components engineered for geothermal conditions

#### Relevance/Impact of Research




Energy Efficiency & Renewable Energy

- INNOVATIONS:
  - Full 7-DOF motion measurement capability
    - Enables simultaneous measurement of p-wave, s-wave and velocity and direction
  - Rotational seismometer
    - Based on either ATA Magnetohydrodynamic Angular Rate Sensor (ARS)
      - High-bandwidth; heritage in aerospace applications, but not yet tailored to geothermal application
    - Or ATA Low-Frequency Improved Torsional Seismometer (LFITS)
      - Custom low-noise, low-frequency angular sensor, not yet adapted to geothermal application
    - Or fusion of both for tailored resolution, dynamic range, bandwidth and linear sensitivity
- IMPACT Potential Cost Saving and Insight Into Evolution of Reservoir:
  - Potential to simplify processing and lower total number of required instruments
  - Provides full measurement of ground motion; enables novel imaging approaches
- GTO GOALS Project Success Offers:
  - Advancing state-of-art in downhole tools to increase information available to understand the evolution of a reservoir during EGS stimulation activities
  - Enabling lower risk and cost of development and exploration

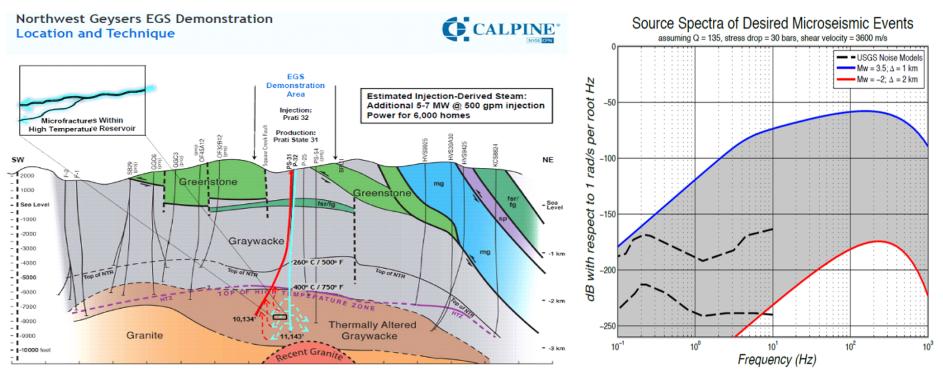

# Scientific/Technical Approach





- Two-Phase Approach with Go / No-Go Gate:
  - Phase I: TRL 3 laboratory proof-of-concept of rotational sensor
    - Two competing rotational sensing technologies
  - Down-select rotational sensing technology and make go / no go decision for Phase II based on feasibility of high temp 7-DOF instrument
  - Phase II: TRL 5 pre-prototypes
    - Low-temp / near-surface sensor
    - High-temp / downhole integrated 7-DOF seismometer

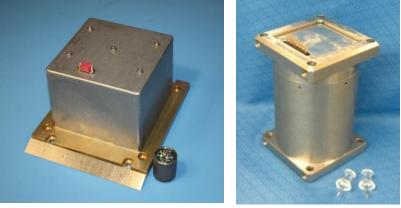





- Phase I: TRL 3 Rotational Sensor Lab Proof-of-Concept
  - Analyze and trade feasibility of two rotational sensing technologies:
    - Elicited and validated requirements for geothermal application
    - Identified suitable components for geothermal environment
    - Modeled and analyzed rotational sensor concepts that would meet requirements
    - Benchmarking models by testing lab brassboards of both technologies
    - Qualifying sensor / measurement tool prospects in development plan
    - Will trade and select best technology to move forward into Phase II

#### Accomplishments, Results and Progress: Requirements Definition

ENERGY Energy Efficiency & Renewable Energy


- Developed Requirements for the 7-DOF Instrument (Task 1)
  - Surveyed the literature, sought team's experience examples, and modeled estimates of the expected pressure, linear motion, and rotational motion
    - Across a range of stand-off distances (primarily temperature driven)
    - Earthquake magnitudes from fractures (Mw = -2 to +3.5)
    - Documented final results



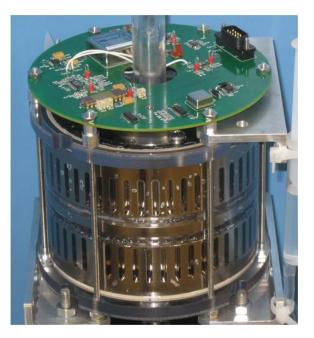
7 | U.S. DOE Geothermal Office

## Accomplishments, Results and Progress: MHD Technology

- Deployed Custom MHD Angular Rate Sensors(Task 4)
  - Packaged three new-generation ATA ARS-16 broad-band rotational sensors as tri-axial set configured for data acquisition
  - SNL characterized performance at USGS facility
  - SNL deployed to Hawai'i volcanic site for surface recording of earthquakes
  - SNL will deploy at local site for surface recording of downhole explosive shot
- Loaned ATA ARS to USGS Site for Recording Surface Ambient Motion to Augment Requirements Development (Task 1)
  - Also supplied USGS two ARS-24 sensors for parallel lower noise measurements
- Developed Concept for Seismic MHD (SMHD) Instrument
  - Updated existing MHD models for geothermal specific configuration including size and materials (Task 3)
  - Performed engineering analysis for path to high-temperature Seismic MHD (SMHD) (Task 2)



3-Axis ARS-16 MHD

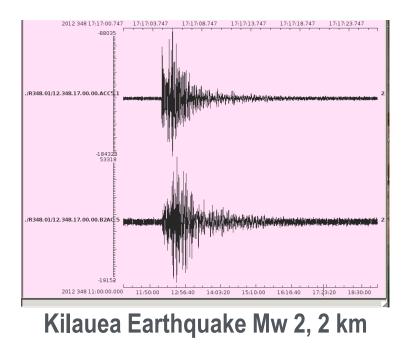

## Accomplishments, Results and Progress: LFITS Technology

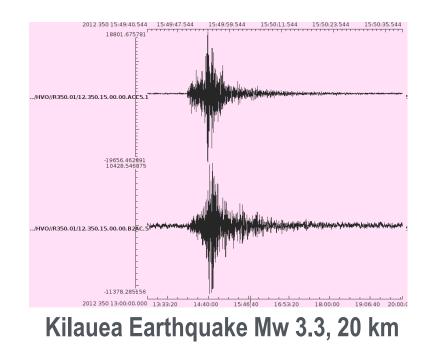
**ENERGY** Energy Efficiency & Renewable Energy

- Developed LFITS Technology Brassboard (Task 4)
  - Developed math model for new sensor (Task 3)
  - Designed proof-of-concept prototype
  - Procured parts and built one LFITS prototype
  - Tested frequency response and compared that with the model's prediction
  - Performed engineering analysis for path to high temperature









## Accomplishments, Results and Progress: Data Sharing

U.S. DEPARTMENT OF ENERGY R

Energy Efficiency & Renewable Energy

- Types of Data Generated:
  - Research Topical Area of DOE Geothermal Data Repository
    - Tested performance of MHD prototypes at USGS
    - Deployed to Hawai'i to record volcanic activity
    - Deployed to record detonation at Sandia National Labs
  - Reports = Technical Papers / Presentations
    - Paper by Dr. Rob Abbott at the annual SSA meeting14-17 April 2013



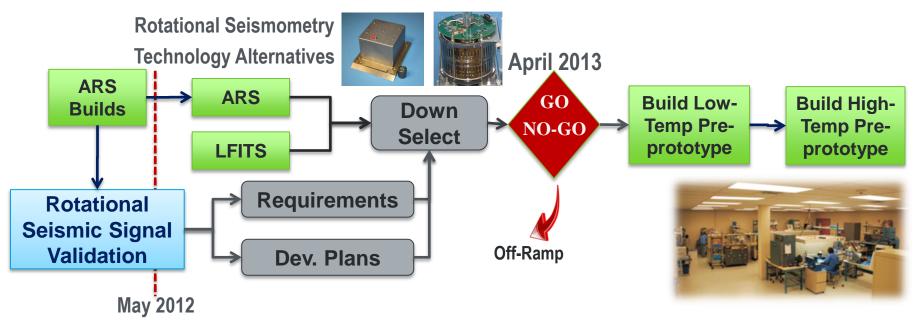


### Accomplishments, Results and Progress: Milestones

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

| Original Planned Milestone/<br>Technical Accomplishment                    | Actual Milestone/Technical<br>Accomplishment                                                                                          | Date<br>Completed |
|----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| Task 1 – Complete Initial 7-DOF<br>Instrument Requirements Doc             | Completed Initial 7-DOF<br>Instrument Requirements Doc                                                                                | Feb 2013          |
| Task 2 – Identify Suitable High<br>Temp Components for 7-DOF<br>Instrument | Completed and documented for 7-<br>DOF non-rotational components<br>as well as parts and materials<br>required for rotational sensors | Jan 2013          |
| Task 3 – Develop LFITS<br>Performance Model                                | Completed in support of LFITS<br>Brassboard Specification Review                                                                      | Oct 2012          |
| Task 4 – Design and build LFITS<br>Brassboard unit                         | Completed; unit currently<br>undergoing characterization for<br>comparison to models                                                  | Feb 2013          |
| Task 4 – Deploy MHD<br>Brassboard unit for<br>characterization             | Completed with USGS and SNL<br>data acquired in relevant<br>environments                                                              | Mar 2013          |


11 | U.S. DOE Geothermal Office

eere.energy.gov

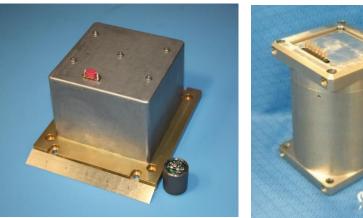
# Future Directions: Plans and Deployment Strategy

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy




- Phase I Activities Projected to Complete Successfully by 30 April 2013
  - Next Decision Point is Phase II Go / No Go [April 2013]
  - Will be based on feasibility of high temperature downhole 7-DOF instrument
- Deployment Strategy (Phase I)
  - Complete brassboard testing and publish results demonstrating scientific theory of instrument benefit to geothermal applications
- Deployment Strategy (Phase II)
  - Iterate build to get pre-prototypes into hands of first adopters if possible
  - Test, publish and present results of instrumentation tests in community


| Milestone or Go/No-Go                                                                                                        | Status and Expected Completion Date                                                                                                                                                                                  |
|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Task 4 – Complete characterization and Testing of LFITS Brassboard                                                           | Close to complete: most of data acquired,<br>analysis in process. Expected completion<br>Mar 2013.                                                                                                                   |
| Task 5 – Complete trade study and<br>downselect to one rotational<br>technology for Phase II 7-DOF<br>instrument prototyping | Trade space over requirements established<br>and SMHD data entered; when LFITS data is<br>completed trade study will complete.<br>Expected completion date Apr 2013.                                                 |
| Task 6 – Solidify Initial<br>Development Plans                                                                               | Task has started with development of high<br>temp SMHD concept design and initial<br>marketing survey by Nanometrics; also<br>addressing materials safety and export<br>controls. Expected completion date Apr 2013. |
| Task 7 – Document and Publish                                                                                                | Expected completion Apr 2013 with presentation of SNL paper at SSA conference, and publication of Phase I Final Report                                                                                               |



- Goal is Full Ground Motion (7-DOF) Characterization
  - Addition of rotational sensing improves characterization of microseismic events in downhole instruments
- Phase I Focused on Rotational Seismometer Technology
  - Trade of two technologies includes science/industry input
  - Brassboard hardware built and used to validate detailed models
- Go / No Go Will Be Based on Instrument Feasibility



**LFITS Brassboard** 



#### **MHD Brassboard**



# **Project Management**

ENERGY Energy Efficiency & Renewable Energy

- Initial Schedule Delays
  - The project had some initial delays due to availability of key personnel
  - These were corrected in October and the program has recovered schedule
  - Successful completion of all project tasks is expected by the end of April 2013 as originally planned
- The program leveraged ATA's existing and extensively validated MHD models as well as hardware to use for MHD brassboards
- Our teaming with Sandia National Laboratories and Nanometrics have ensured ATA's technology was linked to both the science and the commercial communities
- Initial discussions have begun with U.S. GeoThermal about potential collaboration on downhole testing of prototypes in the Phase II

| Timeline: | Planned<br>Start Date | Planned<br>End Date | Actual<br>Start Date           | Actual /Est.<br>End Date      |                                          |                                          |
|-----------|-----------------------|---------------------|--------------------------------|-------------------------------|------------------------------------------|------------------------------------------|
| Budget:   | 9/30/2011             | 4/30/2013           | 9/1/2011                       | 4/30/2013                     | Data through Dec 2012                    |                                          |
|           | Federal<br>Share      | Cost Share          | Planned<br>Expenses<br>to Date | Actual<br>Expenses<br>to Date | Value of<br>Work<br>Completed<br>to Date | Funding<br>needed to<br>Complete<br>Work |
|           | \$600,000             | \$150,000           | \$435,620                      | \$370,185                     | \$371,481                                | \$379,000                                |