

Energy Efficiency & Renewable Energy

Integrated Chemical Geothermometry System for Geothermal Exploration

May 18, 2010

This presentation does not contain any proprietary confidential, or otherwise restricted information.

N. Spycher, M. Kennedy, and E. Sonnenthal (presenter) Lawrence Berkeley Ntl. Laboratory

Track Name

Mandatory Overview Slide

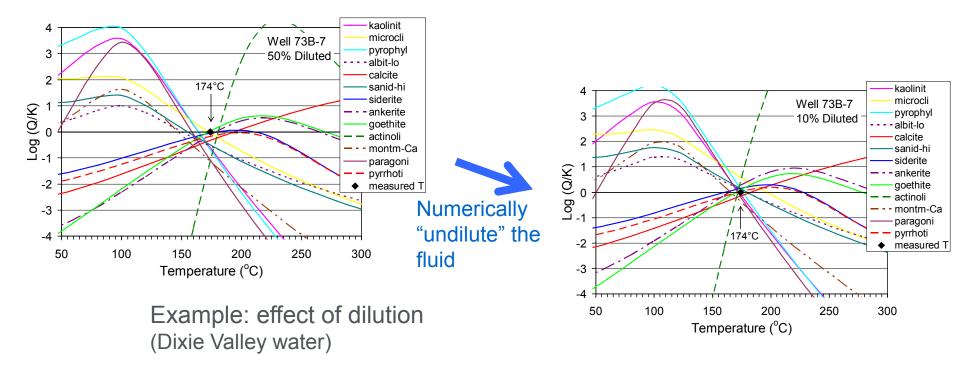
- Timeline
 - Start FY10, Q2
 - End FY12, Q1
 - Just started (<1% complete)
- Budget
 - Total project funding: \$450K
 - DOE share: \$450K
 - Awardee share: N/A
 - Funds received for FY10: \$43K
 - Funding for FY10: \$216K
- Barriers: Site Selection
 - (A) Site Selection & Resource Assessment
 - (B) Site Characterization
- Partners
 - None

Project Objective

• Develop practical and reliable system to predict geothermal reservoir temperatures from integrated chemical analyses of spring and well fluids

Impacts

- See through near surface processes (e.g., dilution, gas loss, etc.), that mask the chemical signatures of deep reservoir temperatures
- More reliable assessment of target reservoir temperature (compared to classical chemical geothermometer interpretations)
- Reduce exploration and development costs


Innovation

- Numerical optimization of multicomponent chemical geothermometry at multiple locations
- Integration with sophisticated geochemical and reactive transport modeling simulations

Scientific/Technical Approach

- Select/evaluate area for study (e.g., Dixie Valley, Nevada)
- Multicomponent chemical geothermometry with data from single features (springs, wells)
 - Evaluate geochemical trends in terms of dilution, gas loss and water-rock equilibration temperature (Reed and Spycher, 1984)

Scientific/Technical Approach

Energy Efficiency & Renewable Energy

- Optimize method for multiple locations
 - Multiple regression of multiple water analyses to yield:
 - Common reservoir temperature
 - Dilution factor and compositions of any mixing endmembers
 - Sink/source terms due to mineral precipitation/dissolution and gas loss
 - Rely on existing parameter estimation software such as iTOUGH2 (Finsterle, 2007) or PEST (Doherty, 2008)
- Reactive transport simulations
 - Evaluate mixing and reaction effects upon fluid ascension to surface for "synthetic" and real cases
- Test optimization system
 - "Synthetic" waters (from a hypothetical reservoir at a known T)
 - Real data sets (e.g., Dixie Valley)
- Implementation of optimization system into a useful software tool

ENERGY Energy Efficiency & Renewable Energy

- Progress to date
 - Just started FY10, Q2
 - Selected a target area Dixie Valley, Nevada Using geochemical data from Goff et al., 2002
 - Started on reviewing site hydrochemical data
 - Preliminary multicomponent chemical geothermometry runs
 - Started setup of reactive transport model
- Expected Outcomes
 - Publications (method and application to different geothermal systems)
 - Geothermometry software for application at various sites
- Team Qualifications
 - Long experience in hydrochemical data analysis, development and application of geothermometers, and geochemical/reactive transport model development and application

Project Management/Coordination

Energy Efficiency & Renewable Energy

- Project Management:
 - PI: Nic Spycher, overall responsibility for project
- Schedule:

Tasks	FY10	FY10	FY10	FY11	FY11	FY11	FY11	FY12
	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
1 Select target area	X							
2 Initial data evaluation	X	X	X					
3 RT Simulations		X	X	X				
4 Develop optimization		X	X	X*				
5 Testing/validation				x	X	x		
6 Finalize system/code							X	X*

- Progress report (FY11, Q1)
- Final report (FY12, Q1)

- Application of resources and leveraged funds/budget/spend plan:
 - Task 1: Evaluation and integration of geochemical Dixie Valley data (10%)
 - Task 2: Application of Reed and Spycher (1984) approach (30%)
 - Task 3: Incorporate reactive transport models (30%)
 - Task 4: Develop optimized tool (30%)

- New integrated chemical geothermometry system
- Relies on optimization of a **multicomponent** geothermometer using data from **multiple locations**
- Integration with sophisticated geochemical and reactive transport modeling simulations
- Implement method into a practical software tool
- More reliable assessment of target reservoir temperature than classical chemical geothermometers
- Reduce costs of geothermal exploration and development