Geothermal Technologies Program 2013 Peer Review

Energy Efficiency & Renewable Energy

Fracture Network and Fluid Flow Imaging for EGS Applications from Multi-Dimensional Electrical Resistivity Structure

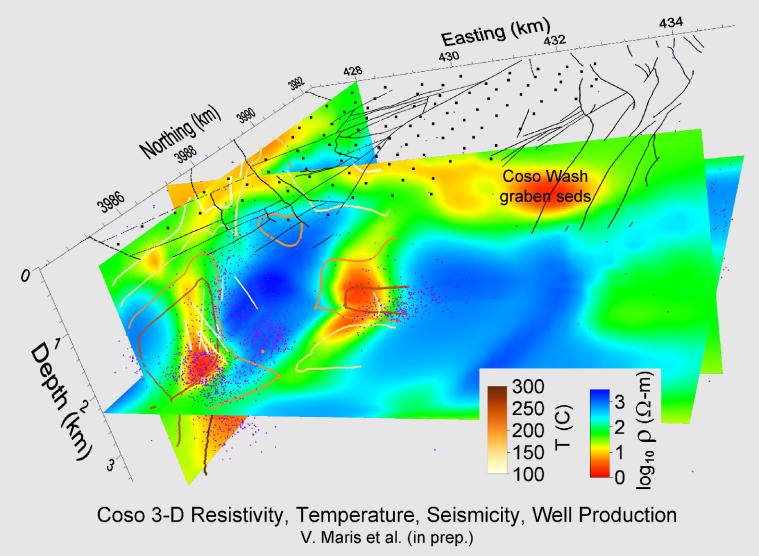
April 23, 2013 ARRA funded R&D

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Principal Investigator: Philip E. Wannamaker University of Utah Energy & Geoscience Institute 423 Wakara Way, Ste 300 Salt Lake City, UT 84108 pewanna@egi.utah.edu

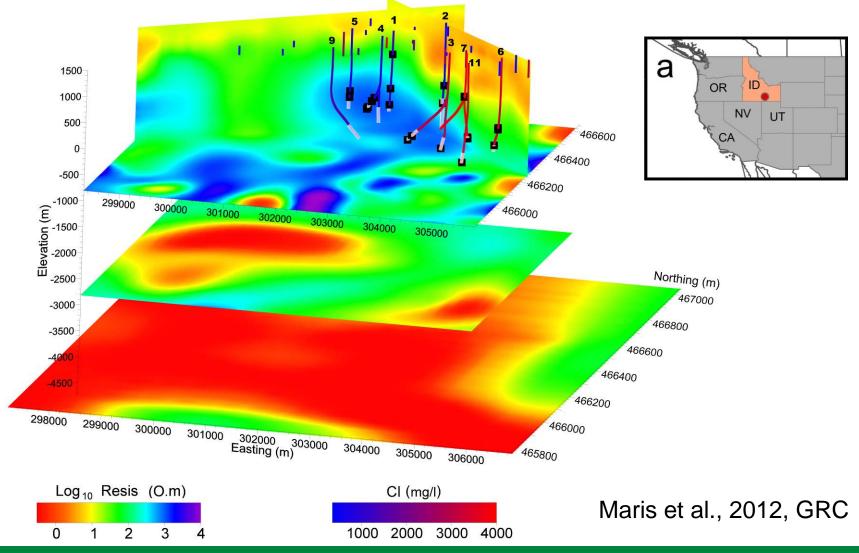
Track 2: Fluid Imaging

Project objectives:


- Barriers to Geothermal
 - Lack of available and reliable resource information
 - High exploration risks
 - Inadequate site selection/characterization, resource assessment
- Cost Reduction and Applications
 - Reduction of false structures and anomalies
 - Higher resolution below realistic receiver topologies
 - High physical property contrasts, conformal physics
- Innovative Aspects and Strengths
 - Accurate surface representation with non-rectilinear elements
 - Use of efficient direct solvers for stability and accuracy
 - Scalable parallelization on economical multi-core workstations

• Re GTO Goals: Electrical resistivity is one of the prime indicators of geothermal processes, but the imaging problem is ill-posed, inflexible in representations, and has been slow and costly.

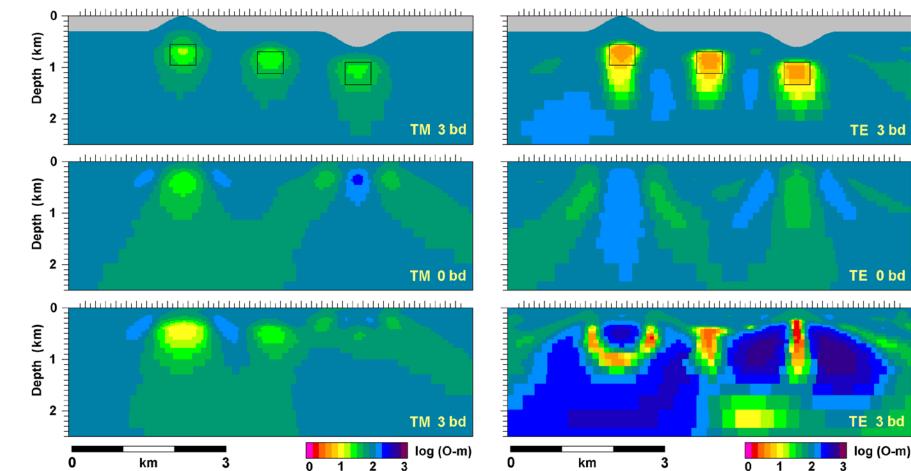
Relevance/Impact of Research


Example Application of Inversion Development to date 1): Coso Geothermal Field

Relevance/Impact of Research

Example Application of Inversion Development to date 2): Raft R Geothermal Field

4 | US DOE Geothermal Program


Relevance/Impact of Research

Hill-Valley, Three-Body TE

Energy Efficiency & Renewable Energy

Influence of Topography/Errors When Ignored

Hill-Valley, Three-Body TM

5 | US DOE Geothermal Program

eere.energy.gov

Energy Efficiency & Renewable Energy

Versatility and Efficiency in Imaging Fluid Flow via Electrical Resistivity

- 1), This is a focused tech dev effort. Create 3-D code for simulating EM responses at the surface of the earth with topographic variations. Evaluate two platform choices to determine the superior approach.
- 2), Incorporate the selected simulation code and the inversion parameter jacobians that follow from it into an existing inversion algorithm for imaging and monitoring and improve its efficiency.

Objective:
$$W_{\lambda}(m) = \{ (d - F[m])^T C_d^{-1} (d - F[m]) \} + \lambda \{ (m - m_0)^T C_m^{-1} (m - m_0) \}$$

NL Step: $m_{k+1} - m_k = \{J_k^T C_d^{-1} J_k + \lambda C_m^{-1}\}^{-1} \{J_k^T C_d^{-1} (d_k - F[m_k]) - \lambda C_m^{-1} (m_k - m_0)\}$

- 3), Parallelize the inversion code on new-generation, multi-core workstations to achieve fast calculations within a single, cost-efficient, symmetric multi-processing (SMP) box.
- 4), Apply the final algorithm to two important geothermal field MT data sets (Karaha, Coso EF, Cove Fort).

Scientific/Technical Approach

- Project Team:
 - <u>P.I. Phil Wannamaker</u>: Problem identification, solution concepts, test criteria, geophysical/geological integration, publication oversight

EGI Post-doc Virginia Maris: Finite difference platform development, inverse step programming, MT data inversion, parallelization

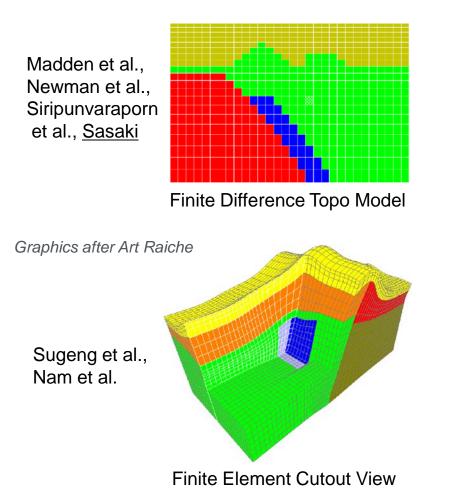
ENERGY

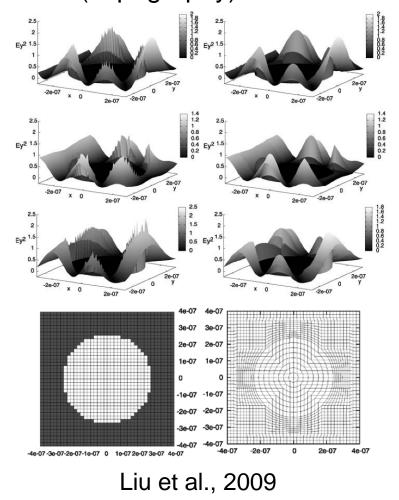
<u>Ph.D student Michal Kordy</u>: Dept of Mathematics, quantitative EM geophysical research, statistics, finite element code development, SAGE student

Kordy: Deformable hexhedral elements for topo, implement divergence correction, parameter jacobians, parallelized direct solution.

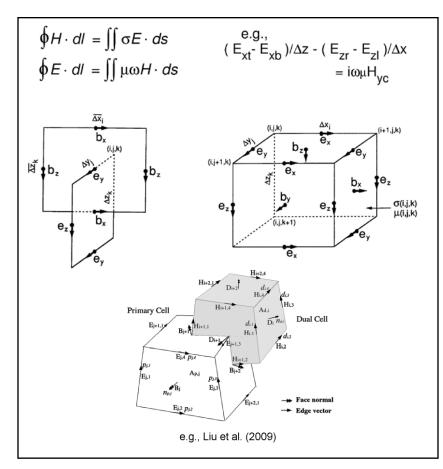
- Maris: Gauss-Newton direct parameter step, great scalability on multi-core.
- Wannamaker: New multi-core sufficient for direct solvers, hex elements have good flexibility but preserve banded system matrices, need for div corr with E-fields.

Energy Efficiency &


Renewable Energy


Scientific/Technical Approach

Energy Efficiency & Renewable Energy


Electromagnetic Simulation and Inversion With Conformal Receiver Surfaces (Topography)

Numerical Approaches to Topographic Simulation

Finite Difference Staggered Grid

Generalize the circulations of ME's around the integration paths

$$\nabla \times E = -i\omega\mu H \qquad \nabla \times H = \hat{\sigma}E$$

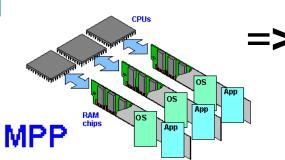
$$\nabla \times \frac{1}{\mu} \nabla \times E - i\omega \hat{\sigma}E = J^{imp}$$

$$E = \sum_{i=1}^{n_e} x_i N_i \qquad H = \frac{-\nabla \times E}{i\omega}$$

$$V \longrightarrow E_{i_0} = \sum_{i=1}^{n_e} x_i N_i \qquad H = \frac{-\nabla \times E}{i\omega}$$

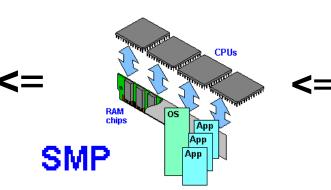
$$W \longrightarrow E_{i_0} = \sum_{i_1}^{n_e} x_i N_i \qquad H = \frac{-\nabla \times E}{i\omega}$$

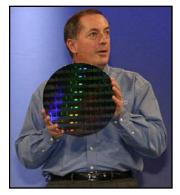
$$W \longrightarrow E_{i_0} = \sum_{i_1}^{n_e} x_i N_i \qquad H = \frac{-\nabla \times E}{i\omega}$$

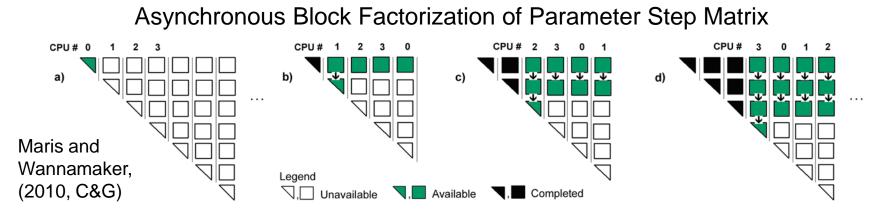

$$W \longrightarrow E_{i_0} = \sum_{i_1}^{n_e} x_i N_i \qquad H = \frac{-\nabla \times E}{i\omega}$$

$$W \longrightarrow E_{i_0} = \sum_{i_1}^{n_e} x_i N_i \qquad H = \frac{-\nabla \times E}{i\omega}$$

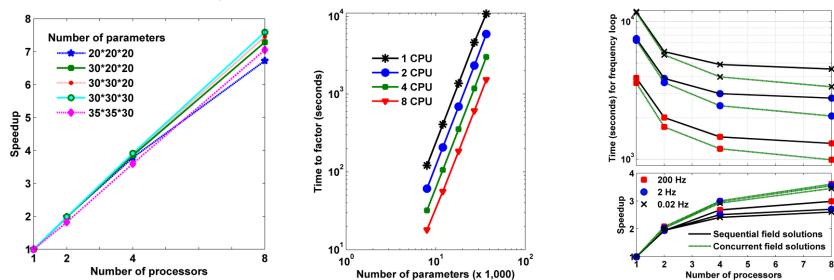
Finite Edge Element Deformable Grid


Shape functions already general for topography


Approach


Intel CEO Paul Otellini holds 80-core chip wafer

Massively Parallel Processing or <u>Symmetric Multiprocessing</u>


24-core, 0.5 TB RAM

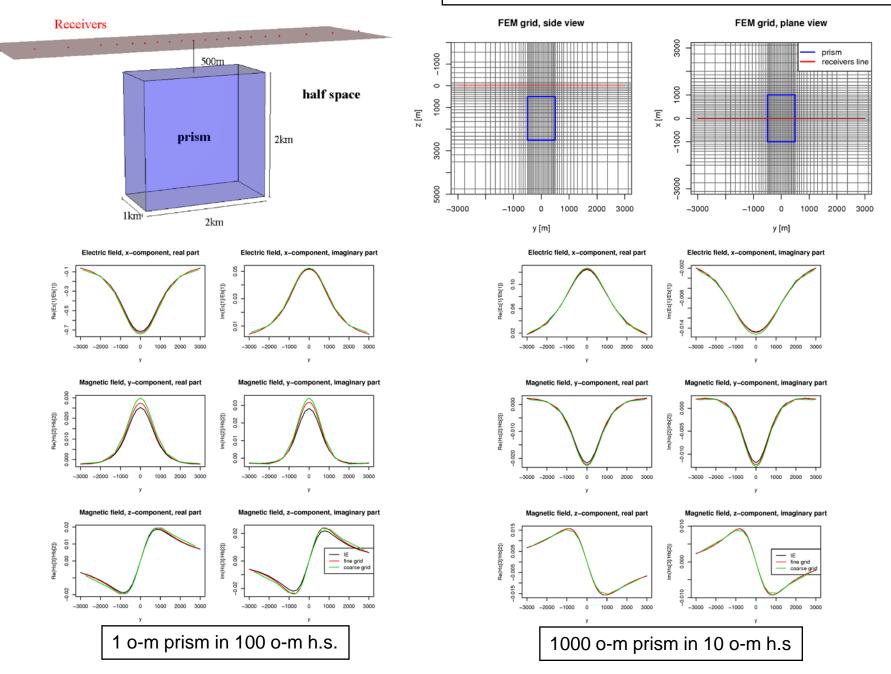
Scientific/Technical Approach

Parallelization of EM Inversion on Multi-core SMP Workstations

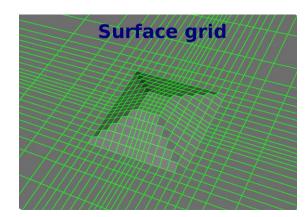
Scalability of Parallelization, Step and Forward/Jacobian

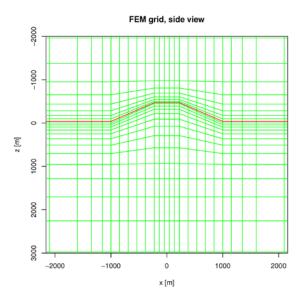
U.S. DEPARTMENT OF

- We began with the edge-element Loki-3D platform (CSIRO); it solved for Lorentz vector potential but we could not get stable E.
- Research in deformable FD approaches incipient, deformable edge elements for E have seen much more investigation.
- Became convinced of advantages of direct (LDL^T) solvers given modern multi-core and experience with parameter step performance (immunity to large element aspect ratios, speed of solving many source vectors, excellent scalability, banded system matrix).
- Programmed flexible edge element E code, including divergence correction for parasitic curl-free errors: accuracy appears high.
- Acquired 24-core w/s with 0.5 TB RAM in November, 2012 (\$14K usd). Excellent scalability in forward, 100's source vectors, parameter step.
- Parameter jacobians derived and programmed using 3D analog to reciprocity approach of deLugao and Wannamaker (1996) in 2D.
- Gauss-Newton step code merged and all parallelized on new workstation in March, 2013.

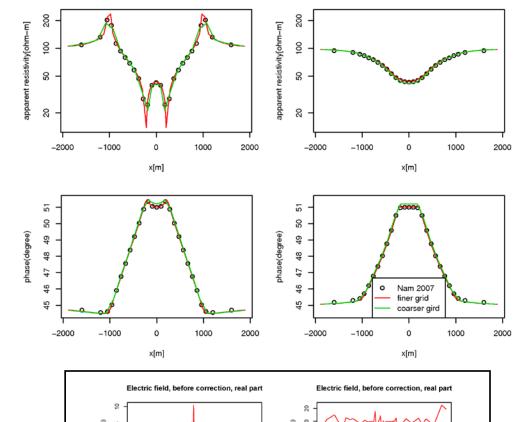


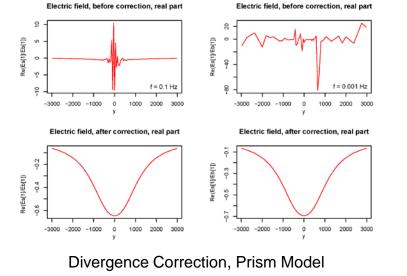
plane wave source -►E

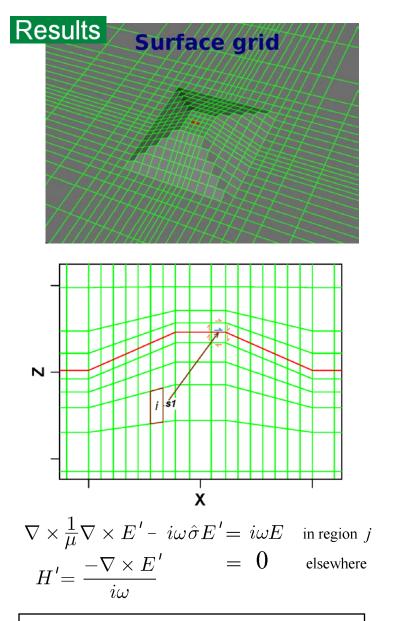

Ъ


air

Numerical Checks: Prism in Half-Space



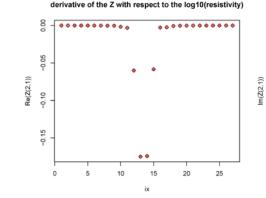

Results



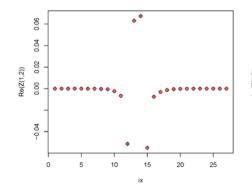
Topographic Test Model (Coarse Discretization) (after Nam et al., 2007)

<u>3D parameter jacobians:</u> -diff. H.E. wrt region j, eq'n dual to Fwd -invoke reciprocity to give 5Nrc sources

derivative of the Z with respect to the log10(resistivity)

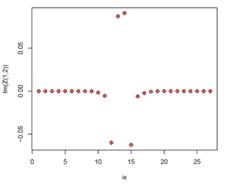

..........

• • • • • • • • • • • • • • •

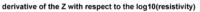

8

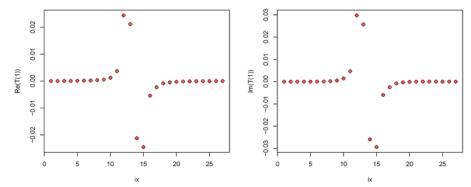
-0.05

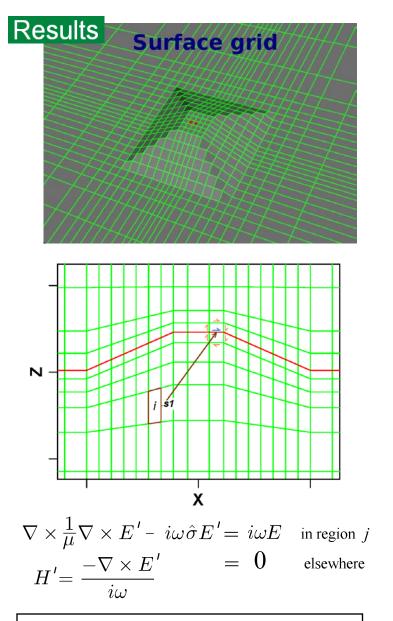
-0.10



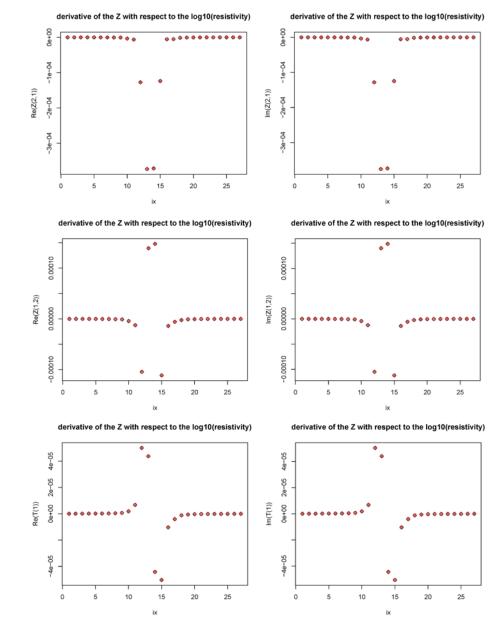
derivative of the Z with respect to the log10(resistivity)



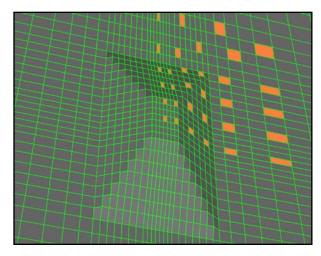

90 0 0 5 10 15 20 25 ix



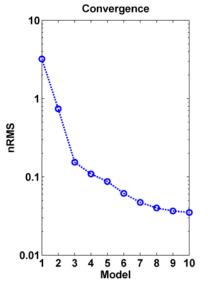
derivative of the Z with respect to the log10(resistivity)



Zyx, Zxy and Tzx at 100 Hz Circles = Recip, Pluses = FwDf

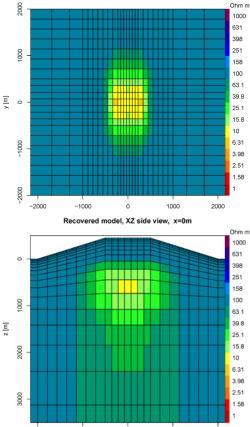


<u>3D parameter jacobians:</u> -diff. H.E. wrt region j, eq'n dual to Fwd -invoke reciprocity to give 5Nrc sources



Zyx, Zxy and Tzx at 0.001 Hz Circles = Recip, Pluses = FwDf

Results


Receiver distribution on hill (one quadrant shown)

Model at iteration 5 shown Starting guess of 50 ohm-m

x [m]

Recovered model, XY plane view, layer 10

Recovered model, XZ side view, y=0m Ohm m 1000 631 0 398 251 158 100 1000 63.1 39.8 25.1 2000 15.8 10 6.31 3.98 2.51 3000 1.58

0

x [m]

0

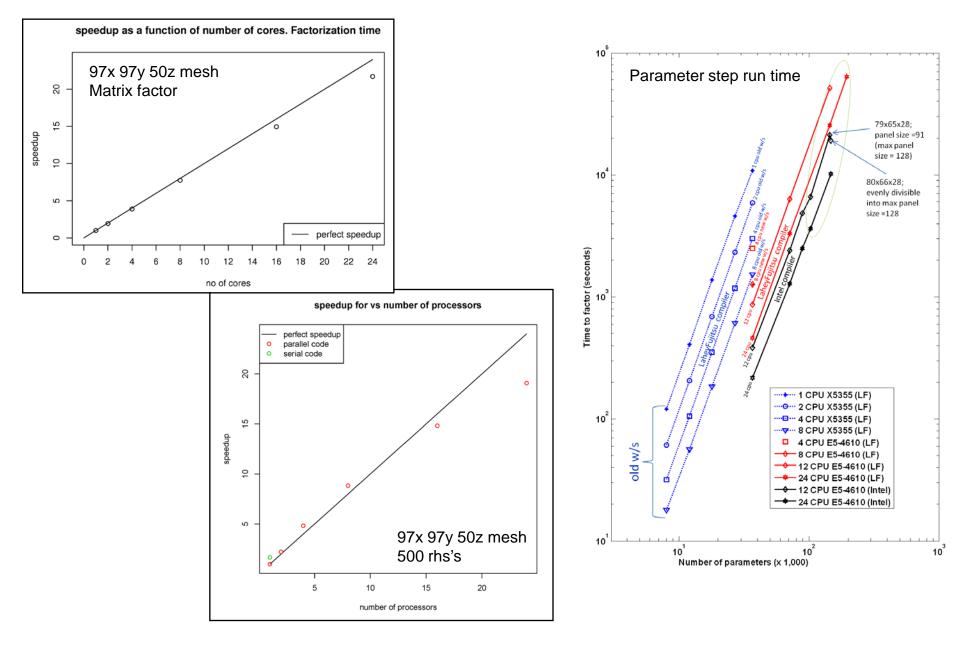
1000

1000

2000

2000

-2000


-2000

-1000

-1000

Multi-core LDL^T factorization speedup

Milestone or Go/No-Go	Status & Expected Completion Date
M1: FD or FE platform choice.	Neither EFD nor Loki attractive; decision to pursue edge E finite elements, June/12.
M2: New 24 core w/s, parameter step parallelization, compiler comp.	Done, November/12.
M3: Def'm edge E mesh and parameter jacobian programming.	Done, January/13.
M4: Merging of parameter step and fwd/jacobian codes, test model.	Done, March/13.
M5: Thorough testing on synthetic data for various topo configs.	Underway, May/13.
M6: Testing on two geothermal MT data sets (TerraGen, ENEL), writeup.	Subsequent to M5, September/13.

Summary Slide

ENERGY Energy Efficiency & Renewable Energy

- Electrical resistivity a key geothermal indicator, esp. in concert with other information.
- Fully 3D analysis of EM data necessary, increasingly possible with mainstream computing.
- With modern multi-core, direct solutions are coming into their own.
- Direct solutions more stable w.r.t. mesh geometry, more efficient for many sources (~500 rhs's = 1 fwd problem in time).
- Multicore technology driven by large market forces and growing.

	FY2013	FY2014
Target/Milestone	To date, prototype 3D MT inversion using deformable mesh and direct solvers.	Project ends with FY13 (ARRA funded).
Results	Prototype completed, more thorough synth. evaluation underway, geothermal data prepped for testing.	

Project Management

Timeline:	Planned Start Date	Planned End Date	Actual Start Date	Current End Date	
	January 8, 2010	January 31, 2013	March 21, 2010	September 30, 2013	

Budget:	Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value of Work Completed to Date	Funding needed to Complete Work
Duuget.	Ttl: \$559,485	Ttl: \$140,378	Ttl: \$490,937 -M1 \$190,050 -M2 \$ 49,936 -M3 \$124,839 -M4 \$126,112 -M5 \$ 72,738 -M6 \$136,188	Ttl: \$490,937 -M1 \$190,050 -M2 \$49,936 -M3 \$124,839 -M4 \$126,112 -M5 \$ 0 -M6 \$ 0	Ttl: \$490,937 -M1 \$190,050 -M2 \$ 49,936 -M3 \$124,839 -M4 \$126,112 -M5 \$ 0 -M6 \$ 0	Ttl: \$208,926 -M1 \$ 0 -M2 \$ 0 -M3 \$ 0 -M4 \$ 0 -M5 \$ 72,738 -M6 \$136,188

• Summary:

- Fruitful mix of personnel with varying length and type of experience.
- Should result in a leading technology in terms of accuracy and flexibility for geothermal MT data sets.
- Pursues a computing technology that is experiencing strong growth.
- Several available geothermal data sets warrant such analysis.