Geothermal Technologies Program 2010 Peer Review

Energy Efficiency & Renewable Energy

Flathead Electric Cooperative Facility Geothermal Heat Pump System Upgrade

May 19, 2010

This presentation does not contain any proprietary confidential, or otherwise restricted information.

CHERYL TALLEY, PE Flathead Electric Cooperative

Ground Source Heat Pumps Demonstration Projects

Mandatory Overview Slide

Energy Efficiency & Renewable Energy

Project Timeline

- Feasibility Study & Design February 1, 2010
- Permit Acquisitions May 10, 2010
- Construction Start May 17, 2010

Project Budget

- Total Budget \$319,600 FY09 \$0
- DOE Share \$155,270 FY10 \$155,270
- Cost Share \$164,330
 - FEC \$116,330
 - Bonneville Power Administration \$48,000

- Construction End August 31, 2010
- Data Acquisition & Dissemination to DOE -September 1, 2010 – September 2012

Barriers

- Water Rights Authorities
 - Water Rights Application complicated, involved, & time intense (180 Days to Review)

Partners

- Jackola Engineering & Architecture
 - Extensive Ground Source Heat Pump System Design Experience

Project Will Take Advantage of Abundant Water in Shallow Aquifer

- 15' Static Water Level
- Low Pumping
 Power
- Reduced Installation
 Good
 Costs
 - Good Quality Water

Demonstrate Low Temperature GSHP System Design

- Modular heat pumps with variable water temperature output (90° F- 140° F)
- Maximum System Efficiency, 5.0+ COPs
- Extreme climate conditions, i.e. outdoor design temp of -19° F
- System to serve radiant floors, hydronic unit heaters, and outdoor ventilation air tempering

Provides a Baseline for Local Industrial Geothermal Project Costs and Benefits

- As a utility company, Flathead Electric Cooperative is uniquely positioned to provide marketing of ground source heat pump systems
- \$ Incentives to GSHP customers
 - Real-time public display of energy saved and emissions avoided
- GSHP technical support
- Energy data analysis

Technical Approach

- (4) 20 Ton Heat Pump Modules = 1,000,000 Btuh of Heating Only
- Ground Water Source Open Loop Design
 - 15' Static Water Level
 - Clean & Viable Ground Water
 - VFD Submersible Well Pump

Low Temperature Applications

- Variable Flow, Modular Heat Pump System w/Variable Temperature Output Up to 140° F
- Radiant Floors
- Unit Heaters Capable of Heat Delivery w/Low Water Temperature Source (90° -140°)
- Heat Recovery Ventilators Water Coils Capable of Heat Delivery w/Low Water Temperature Source (90° -140°)

Outdoor Reset Control: Heat Delivered = Heat Lost

- Controls Supply Water Temperature Based on Outdoor Air Temperature
- Maximizes Heat Pump COP's
- Minimal Equipment Cycling

Completes Facility Wide HVAC Transition to GSHP Heating & Cooling

Scientific/Technical Approach (continued)

Project Milestones

Feasibility Study

- Complete
- Provided Favorable Results to both Technical and Economic Viability of Proposed System

System Concept Development to Final Design

• Complete

Well Drilling & Water Rights Certificate

- Well Drilling to be Complete by May 20, 2010
- Water Rights Certificates
 - FY10 Go/No Go Decision Point

System Commissioning

• September 1, 2010

U.S. DEPARTMENT OF ENERGY

Energy Efficiency & Renewable Energy

- Feasibility Study
 - Payback Period is Approximately 16 Years
- System Concept Development to Final Design
 - Complete
- Construction Permits & Water Rights Certificate
 - Permits Obtained by May 10, 2010
 - Water Rights Certificates Expected to be Acquired without Problems

System Commissioning

- September 1, 2010
- Will Include Heat Pump Manufacturer Representative
- Adjustments to Source & Load Water Flowrates to Maximize Performance

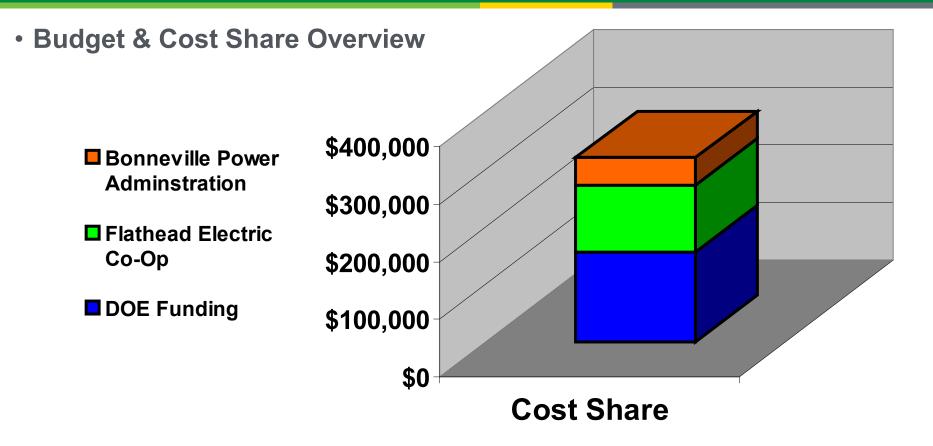
Data Acquisition & Analysis

 BTU Meter, Flowmeter, & Temperature Sensors will Measure Energy Delivered to Space While Electric Meter will Measure Power Consumed by Heat Pump Modules

Accomplishments, Expected Outcomes and Progress (continued)

- Data Acquisition & Analysis (continued)
 - Data and Analysis Results will be Provided to the DOE through the use of the Geothermal Desktop Software or Other Means Required by the DOE.
 - Equipment
 - Heat Pump
 - Modules can be Combined to Provide Variable Output and Allow for Future Expansion (Up to 600 Tons)
 - Can be Piped and Controlled to Produce the desired Evaporator or Condenser Temperature
 - Team Qualifications
 - Flathead Electric Cooperative
 - At Forefront of Renewable Energy in the Region
 - Facility Wide GSHP Systems
 - Jackola Engineering & Architecture
 - 50+ Combined Years of GSHP System Design

Energy Efficiency & Renewable Energy


Project Management/Coordination

- **Phase 1** (February 1, 2010 June 30, 2010)
 - Feasibility Study, Engineering Design Jackola Engineering & Architecture
 - Well Drilling & Development Certified Well Driller
 - Well Testing, Data Analysis, & Water Rights Application to DNRC Jackola Engineering & Architecture
 - Go/No Go Point Contingent on Water Rights Certificate from DNRC
- **Phase 2** (May 17, 2010 September 1, 2010)
 - Project Coordination Principal Investigator, Director of Facilities Maintenance and Jackola Engineering & Architecture
 - Construction and Equipment Installation Contractor w/experience in GSHP system installation
 - Weekly site meetings and Project Inspection Jackola Engineering & Architecture
 - Project Cost Accounting Flathead Electric Co-Op Principal Investigator, Support Services Manager & Staff, Contractor
 - System Commissioning Jackola Engineering & Architecture, Contractor
- Phase 3 (September 1, 2010 September 1, 2012)
 - Equipment Operation Director of Facilities Maintenance
 - Data Collection & Analysis Flathead Electric Co-Op Energy Services Group
 - Business & Technical Marketing Flathead Electric Co-Op Marketing Team

Project Management/Coordination (continued)

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

National Geothermal Data System

• Data and Analysis Results will be Provided to the DOE through the use of the Geothermal Desktop Software or Other Means Required by the DOE.

Future Directions

- Flathead Electric Co-Op Facility HVAC Upgrade Project to Showcase Feasibility of Commercial and/or Industrial GSHP System in Region
 - Public Access to Project Feasibility, Costs, Implementation, and Performance
 - Published on Flathead Electric Co-op's Website, in Monthly Newsletter, and National Utility Industry Magazines
 - Highlights Commitment to Renewable Energy Initiative
 - Highly Publicized as 1 of 2 DOE GTP Funded Projects in Montana
 - Interest From other Regional Utility Companies
- Sharing of Project Success Factors as Opportunities Arise
- Potential Increase in Ground Source Heat Pump Commercialization
 based on Proven Feasibility and Performance

- Flathead Electric Co-Op Presents Unique and Innovative GSHP Demonstration Project
- Predicted to validate Technical & Economic Feasibility of Commercial-Scaled GSHP System in Region
- Strengthen Flathead Electric Co-Op's Renewable Energy Commitment & Platform
 - Instrumental in Keeping the Northwest as the lowest carbon-emitting Region in the U.S.
- Utilize Abundant & Clean Natural Resource Shallow Aquifer
- Use of Modern & Highly Efficient System Equipment & Components
 - Modular Heat Pump
 - Use of Low Temperature Heating Water
 - Technically Advanced Pumps VFD & ECM