
Geothermal Technologies Program 2013 Peer Review

Energy Efficiency & Renewable Energy

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

Project Officer: Dr. Bill Vandermeen Total Project Funding: \$1.633.493

April 24, 2013

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Dr. Yu-Shu Wu Colorado School of Mines

DE-EE0002762

• Timeline

Start Date	End Date	Complete
01/01/10	12/31/2013	90%

Budget

Contributor	Fund		
Department of Energy (DOE)	\$1,191,893		
Computer Modeling Group Ltd. (CMG)	\$441,600		
Total	\$1,633,493		

• Partners

Colorado School of Mines Lawrence Berkeley National Laboratory Computer Modeling Group Ltd.

- The reservoir simulator developed from this project is among the first rigorous fully couple hydro-thermal-mechanical-chemical (THMC) reservoir simulator **in public domain**.
- This simulator will substantially enhance our ability to characterize EGS systems and provide practical approaches to assess the following:
 - Long-term performance
 - Optimum design
 - Operation strategies, and
 - Commercial feasibility

- **Develop a general framework** for effective flow of water, steam and heat in in porous and fractured geothermal formations
- **Develop a computational module** for handling coupled effects of pressure, temperature, and induced rock deformations
- **Develop a reliable model** of heat transfer and fluid flow in fractured rocks
- **Develop a chemical reaction module** to include important chemical reactions in EGS
- **Develop an efficient parallel computing** methodology for simulation purposes
- Apply the EGS simulator to laboratory and field data of geothermal reservoirs.

General framework: Integral finite differences

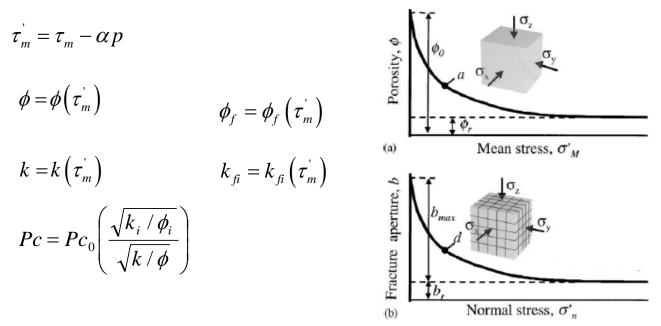
$$\frac{d}{dt} \int_{V_n} \mathbf{M} \ dV_n = \int_{\Gamma_n} \mathbf{F} \ \bullet \mathbf{n} d\Gamma_n + \int_{V_n} q \ dV_n$$

Mass balance equation
for Component
$$\kappa$$
Energy balance equationForce balance equation $M^{\kappa} = \sum_{\beta} \phi S_{\beta} \rho_{\beta} X_{\beta}^{\kappa}$ $M^{h} = (1 - \phi) \rho_{R} C_{R} T$
 $+ \phi \sum_{\beta} S_{\beta} \rho_{\beta} u_{\beta}$ $M = 0$ $F_{\beta}^{\kappa} = \sum_{\beta} X_{\beta}^{\kappa} v_{\beta}$ $F^{h} = -\left[(1 - \phi)K_{R} + \phi \sum_{\beta} S_{\beta} K_{\beta}\right] \nabla T$ $F = \frac{3(1 - v)}{(1 + v)} \nabla \tau_{m} + F_{b}$
 $+ f_{\sigma} \sigma_{0} \nabla T^{4} + \sum_{\beta} h_{\beta} F_{\beta}$ $F = \frac{2(1 - 2v)}{(1 + v)} \nabla \left[\sum_{j} \alpha_{j} p_{j} + 3\beta K \omega_{j} T_{j}\right]$

Rock deformation module

- Fully-coupled geomechanics and flow modules based on poro-thermo-elastic assumptions
- Force balance equation:

$$\int_{\Gamma_n} \left[\frac{3(1-\nu)}{(1+\nu)} \nabla \tau_m + F_b - \frac{2(1-2\nu)}{(1+\nu)} \nabla \sum_j \left(\alpha_j p_j + 3\beta K \omega_j T_j \right) \right] \bullet \mathbf{n} d\Gamma_n = 0$$


$$K\varepsilon_{v} = \tau_{m} - \sum_{j} \left(\alpha_{j} p_{j} + 3\beta K \omega_{j} \left(T_{j} - T_{ref} \right) \right)$$

Rock deformation module

- Stress-sensitive hydraulic properties
 - Four correlations for porosity-stresses and
 - Four correlations for permeability-stresses are implemented

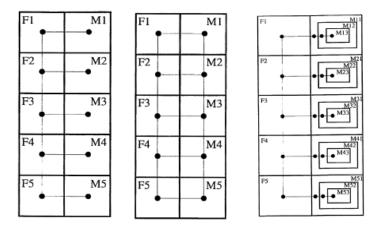
For example:

Rutqvist et al. 2002; Rutqvist, J. Y.S Wu, C.F. Tsang, and G.S. Bodvarsson, A modeling approach for analysis of coupled multiphase fluid flow, heat transfer, and deformation in fractured porous rock, *International Journal of Rock Mechanics and Mining Sciences*, Vol. 39, pp.429-442, 2002.

Chemical reaction module

- Aqueous-based reservoir stimulation is likely to promote dissolution of some rock minerals, while precipitating others, and lead to large impact on the permeability of the fracture network
- Mineral dissolution and precipitation are considered under kinetic conditions and The temperature dependence of the reaction rate constant can be expressed via an Arrhenius equation
- **Transport equations:** Mass balance (transport) equations for chemical components can be expressed as:

$$\frac{d}{dt}\int_{V_n} \mathbf{M}^{\kappa} dV_n = \int_{\Gamma_n} \mathbf{F}^{\kappa} \bullet \mathbf{n} d\Gamma_n + \int_{V_n} q^{\kappa} dV_n + \int_{V_n} R^{\kappa} dV_n$$


where κ is chemical component index, such as Ca²⁺, SiO₂(aq), and R is mass transfer from solid phases such as calcite and silica mineral dissolution and precipitation.

• Chemical reactions are considered as secondary equations

Fracture module

• Generalized dual-continuum methodology: treats fracture and matrix flow and interactions using a multi-continuum numerical approach

- The Approach can be applied for
 - Discrete fracture i.e. hydraulic fracture (man made) and faults
 - Fracture network or naturally fractured reservoirs

Parallel computing module

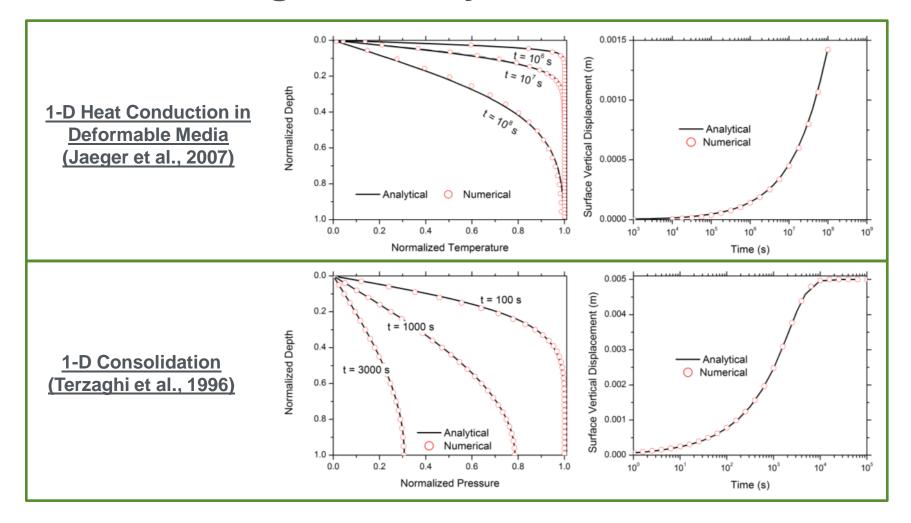
- Advanced parallel simulation scheme has been developed and implemented into TOUGH2-EGS simulator.
- Considering the highly nonlinear nature of the coupled processes as well as the large number of mass/chemical components, involved in multiphase fluid and heat flow in EGS systems, efficient parallel computation is an essential step for any realistic field-scale application of reservoir modeling tools (Zhang et al. 2001a, Zhang and Wu, 2006).
- The parallel simulation capability has been built by taking advantage in rapid advance in computer and computational sciences, as well as high-performance reservoir simulation technology (Wu et al. 2002; Zhang et al. 2008).

- Developed simulators
 - TOUGH2-EGS (THMC for single CPU)
 - TOUGH2-EGS-MP (THM for multiple CPUs)
- Published seven conference papers

Original Planned Milestone		Technical Accomplishment	Date Completed	
Verify the developed simulators against:				
•	Analytical solutions	Completed	Q2 2011	
•	Commercial simulator	Completed	Q3 2011	
•	Published simulation study	Completed	Q1 2012	
•	Field data	Completed	Q4 2012	
Public training		June 2-3, 2013	-	

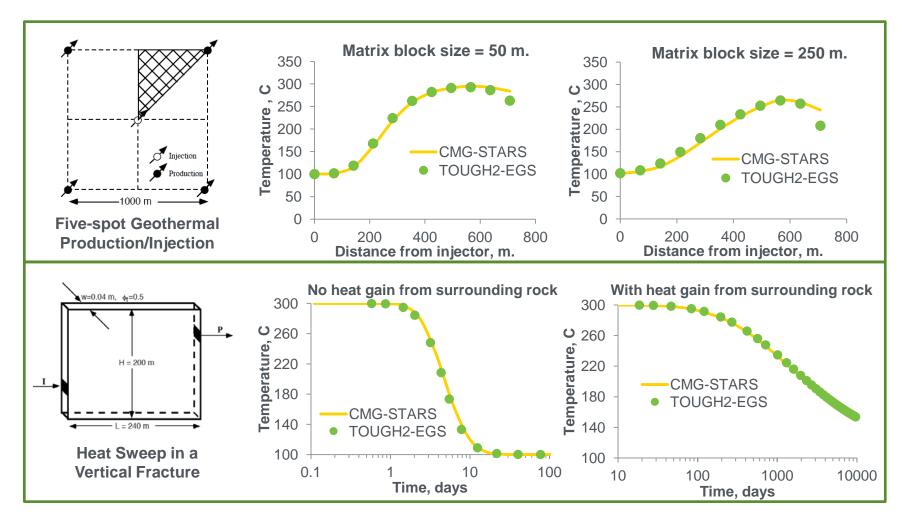
U.S. DEPARTMENT OF

ENERGY

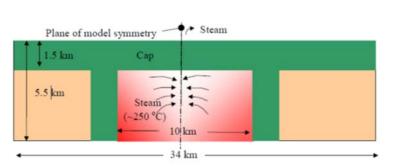

Energy Efficiency &

Renewable Energy

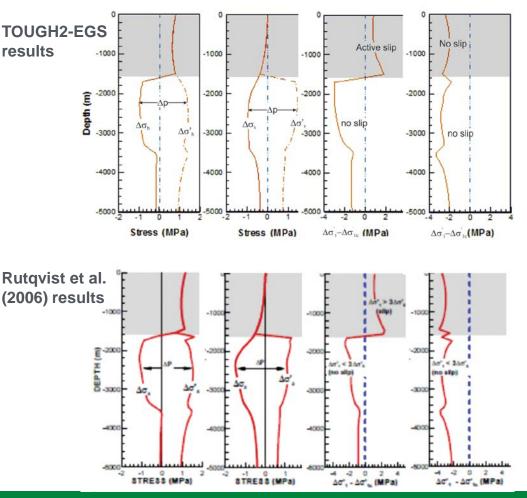
U.S. DEPARTMENT OF


Energy Efficiency & Renewable Energy

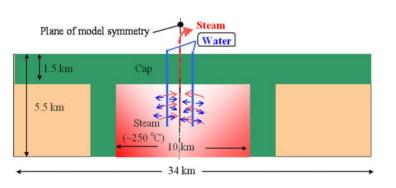
Verification: Against analytical solutions



U.S. DEPARTMENT OF

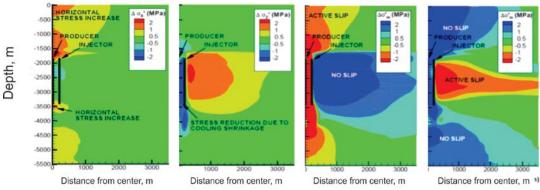

Verification: Against CMG-STAR (commercial simulator)

Verification: Against published simulation study (Induced-MEQ study the Geysers, Rutqvist et al.,2006)


Schematic of model geometry for coupled THM modeling of steam production at the Geysers Geothermal Field

Ref: Rutqvist J., J. Birkholzer, F. Cappa, C.M. Odenburg, and C.F. Tsang, Shear-Slip Analysis in Multiphase Fluid Flow Reservoir Engineering Applications using TOUGH-FLAC, TOUGH Symposium, LBNL, Berkeley, California, 2006.

Verification: Against published simulation study (Induced-MEQ study the Geysers, Rutqvist et al.,2008)


TOUGH2-EGS results

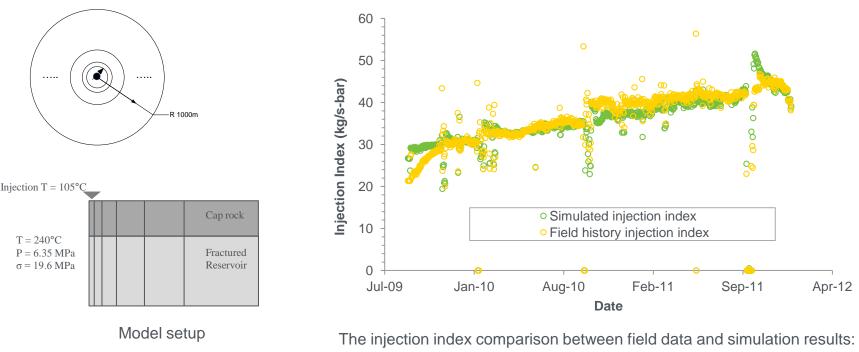
Schematic of model geometry for coupled THM modeling of steam production and water injection at the Geysers Geothermal Field

Active Slip No slip -1000 -1500 Depth, m -2000 2.0 1.0 0.5 -0.5 -1.0 -2.0 - 2.0 - 1.0 0.5 0.5 1.0 2.0 2.0 1.5 1.0 0.5 -0.5 -1.5 -2.0 - 1.0 0.5 0.5 - 1.0 2.0 -2500 No slip -3000 -3500 -4000 roduce rodu ce rod uce Pinduc -1500 -5000 -55.00 1000 2000 2000 3000 1000 3000 3000 1000 2000 1000 2000 Distance from center, m Distance from center, m Distance from center, m Distance from center, m

Rutqvist et al. (2008) results

References

Rutqvist J., and Odenburg, C.M., (2007), "Technical Report#1: Development of fluid injection strategies for optimizing steam production at The Geysers geothermal field, California," LBNL, Berkeley, California, LBNL-62577.

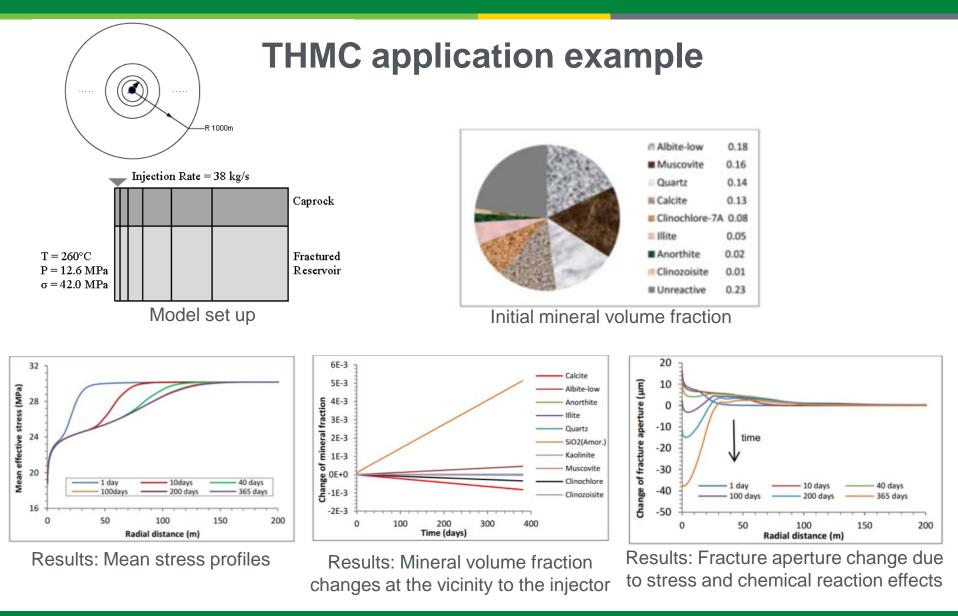

Rutqvist, J., and Odenburg, C.M., (2008), "Analysis of injection-induced microearthquakes in a geothermal steam reservoir, The Geysers geothermal field, California," *in proceeding of The 42nd U.S. Rock Mechanics Symposium (USRMS)*, San Francisco, California.

15 | US DOE Geothermal Program

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Verification: Against field data



The injection index comparison between field data and simulation results: The well injection index increased with time indicates well stimulation due to cold water injection which can be captured by the simulation.

Accomplishments, Results and Progress

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Complete the following list:

Milestone	Expected Completion Date			
User's manual	Q1 2013			
Speed up test for large problems (>1,000,000 grids)	Q2 2013			
Public training	Q2, 2013			
Final report	Q3 2013			

- We have successfully developed a fully-coupled hydro-thermal-mechanicalchemical (THMC) reservoir simulator and validated the simulator against analytical solution, a commercial reservoir simulator, published simulation study, and field data.
- The reservoir simulator developed from this project is among the first rigorous fully-coupled hydro-thermal-mechanical-chemical (THMC) reservoir simulator.
- The developed simulators can be used to characterize EGS systems and provide practical approaches to assess the following:
 - Long-term performance
 - Optimum design
 - Operation strategies, and
 - Commercial feasibility
- The overall project is largely on schedule and budgeted appropriately

Timeline:	Planned Start Date		Planned End Date	Actual Start Date		Current End Date	
	01/01/1	C	12/31/13	01/01/10		12/31/13	
Budget:	Federal Share	Cost Share	Planned Expenses to Date	Actual Expenses to Date	Value Work Com to Dat	pleted	Funding needed to Complete Work
	\$1,191,893	\$441,600	\$992,917	\$991,917	\$991,9	17	\$199,976

- A collaborated study with a geothermal field operator is on going
- Public training for the developed simulator is planned during June 2-3, 2013

BACKUP

List of Publications

- Yi, X., L. Hu, and Y. S. Wu, 2013, "Coupled Geomechanical And Reactive Geochemical Simulations For Fluid And Heat Flow In Enhanced Geothermal Reservoirs" in proceeding of The Thirty-eighth Workshop on Geothermal Reservoir Engineering, Stanford, California, 11-13 Feb.
- Fakcharoenphol, P., H. Kazemi, S. Charoenwongsa, and Y.S. Wu, 2012, "The Effect of Water Induced Stress to Enhance Hydrocarbon Recovery in Shale Reservoirs", SPE 158053, presented at the 2012 SPE Annual Technical Conference and Exhibition held in San Antonio, Texas, 8-10 Oct.
- Hu, L., P. H. Winterfeld, P. Fakcharoenphol, Y.S. Wu, K. Zhang, T. Xu, 2012, "A novel fully coupled flow and geomechanics model in fractured and porous geothermal reservoirs," TOUGH symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, 17-19 Sep.
- Fakcharoenphol, P., L. Hu, Y.S. Wu, S. Charoenwongsa, and H. Kazemi, 2012, "A Fully Coupled Flow and Geomechanics Model: Application to Enhanced Geothermal Reservoirs," in proceeding of the TOUGH symposium 2012, Lawrence Berkeley National Laboratory, Berkeley, California, 17-19 Sep.
- Fakcharoenphol P., L. Hu, and Y.S. Wu, 2012, "Fully-Implicit Flow and Geomechanics Model: Application for Enhanced Geothermal Reservoir Simulations" in proceeding of The Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford, California, 30 Jan- 1Feb.
- Fakcharoenphol, P. and Y. S. Wu, 2011, "A Fully-Coupled Flow-Geomechanics Model for Fluid and Heat Flow in Geothermal Reservoirs", in proceeding of the 2011 GRC Annual meeting, San Diego, CA, 23–26 Oct.
- Fakcharoenphol, P. and Y. S. Wu, 2011, "A Coupled Flow-Geomechanics Model for Fluid and Heat Flow for Enhanced Geothermal Reservoirs", ARMA 11-213, in proceeding of the 45th US Rock Mechanics / Geomechanics Symposium, San Francisco, CA, 26–29 Jun.
- Fakcharoenphol P., A. Jamili, and Y.S. Wu, 2010, "Numerical Simulation of Coupled Processes for Multiphase Flow, Rock Deformation, and Heat Transfer in Enhanced Geothermal Systems," presented at the 2010 GSA Denver Annual Meeting, Denver, Colorado, 31 Oct –3 Nov.