
Geothermal Technologies Program 2010 Peer Review

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

Development of Advanced Thermal-Hydrological-Mechanical-Chemical (THMC) Modeling Capabilities for Enhanced Geothermal Systems

May 19, 2010

This presentation does not contain any proprietary confidential, or otherwise restricted information.

Yu-Shu Wu Colorado School of Mines

DE-EE0002762

Contents

- Overview
- Project Objectives
- Team Members
- Technical Approach
- Work Plan and Progress
- Project Management
- Summary

Overview

• Timeline

Start Date	End Date	Complete
01/01/10	12/31/2013	5%

Budget

Contributor	Fund
Department of Energy (DOE)	\$1,191,893
Computer Modeling Group Ltd. (CMG)	\$441,600
Total	\$1,633,493

• Barriers

- few data or constitutive relations available for correlating flow/rock properties and rock deformation and fluid-rock interactions in non-isothermal fractured or porous media rock of geothermal reservoirs
- Partners
 - Colorado School of Mines
 - Lawrence Berkeley National Laboratory
 - Computer Modeling Group

- **Develop a general framework** for effective flow of water, steam and heat in in porous and fractured geothermal formations
- **Develop a computational module** for handling coupled effects of pressure, temperature, and induced rock deformations
- Develop a reliable model of heat transfer and fluid flow in fractured rocks
- **Develop a chemical reaction module** to include important chemical reactions in EGS
- **Develop an efficient parallel computing** methodology for simulation purposes
- Apply the EGS simulator to laboratory and field data of geothermal reservoirs

Expected Outcome & Impact of Research

- The reservoir simulator developed from this project will be among the first rigorous fully-coupled hydro-thermal-mechanical-chemical (THMC) reservoir simulator.
- This simulator will substantially enhance our ability to characterize EGS systems and provide practical approaches to assess the following:
 - Long-term performance
 - Optimum design
 - Operation strategies, and
 - Commercial feasibility

Project Team Members

Member	Qualifications
Dr. Yu-Shu Wu	 Colorado School of Mines CMG Reservoir Modeling Chair Professor in Petroleum Engineering Dept. Professor of Petroleum Engineering Department (2008-Current) Lawrence Berkeley National Laboratory (LBNL) Staff Geological Scientist (1995-2008): One of the developers of the LBNL's reservoir simulator: "TOUGH2 family of codes," world-widely used in geothermal reservoir studies.
	• Research Area of Interest Multiphase flow and heat transfer in subsurface, CO ₂ sequestration, reservoir simulation and geothermal energy
Dr. Hossein Kazemi	 Colorado School of Mines Chesebro' Distinguished Chair Professor in Petroleum Engineering Dept. Professor of Petroleum Engineering Department (1980-Current)
	 Marathon Oil Company (1969-2000) Research Scientist, Senior Technical Consultant, Director of Production Research, Manager of Reservoir Technology, and Executive Technical Fellow at Marathon Petroleum Technology Center
	 Research Area of Interest Reservoir Simulation (Naturally-Fractured Reservoirs, IOR/EOR), Geomechanics and Transient Well Testing
	 Awards&Honors Member of the National Academy of Engineering SPE Honorary and Distinguished Membership SPE Improved Oil Recovery Pioneer Award (2006) SPE Rocky Mountain North America Regional Reservoir Description and Dynamics Award (2008), etc.

Project Team Members

Energy Efficiency & Renewable Energy

Member	Qualifications
Dr. Tianfu Xu	 Lawrence Berkeley National Laboratory (LBNL) Staff scientist: 16 years experience in development of numerical modeling of multiphase non-isothermal fluid flow and reactive transport in unsaturated and saturated porous media and fractured rock systems. Chief developer of LBNL's multi-phase non-isothermal reactive flow and chemical transport simulator: "TOUGHREACT." Research Area of Interest Geothermal energy development: formation scaling due to water injection, optimization of injection water chemistry, chemical stimulation for enhanced geothermal system (EGS), use of CO₂ as working fluid for EGS (CO₂-EGS), controlling and mineral dissolution and precipitation in the reservoir. CO₂ sequestration: fate and transport of injected CO₂ in storage reservoirs, mineral trapping, caprock and cement alterations due to CO₂ intrusion, and the impact of CO₂ leakage on groundwater quality.
Dr. Keni Zhang	 Lawrence Berkeley National Laboratory (LBNL) Geological scientist (2000-current) Primary developer of LBNL's parallel computing simulators: TOUGH2-MP, TMVOC-MP, and parallel TOUGH+HYDRATE. Research Area of Interest Large-scale, multi-component, multi-phase fluid and heat flow simulation for CO₂ geological sequestration, nuclear waste disposal, and gas hydrate studies.

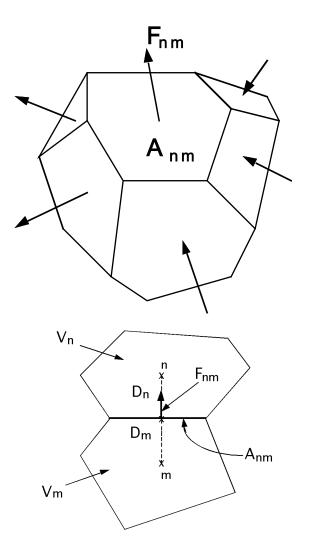
Member	Qualifications
Computer Modeling Group (CMG)	 The Largest Independent Developer of Reservoir Simulation Software Providing oil/gas reservoir simulation tools for EOR/IOR processes especially thermal reservoir modeling Market leader: 300+ clients world wide - in 45 countries Thousands of users world wide Products IMEX (Black oil modeling) STARS (Advanced processes i.e. thermal modeling, naturally-fractured reservoir modeling, geomechanical modeling, compositional modeling, etc.) GEM and WinProp (Compositional modeling) Builder and Results (Visualization animation)

U.S. DEPARTMENT OF ENERGY Energy Efficiency & Renewable Energy

General framework: Integral Finite Differences

$$\frac{d}{dt} \int_{V_n} \mathbf{M} \ dV_n = \int_{\Gamma_n} \mathbf{F} \quad \bullet \mathbf{n} d\Gamma_n + \int_{V_n} q \ dV_n$$

Mass Balance for Component κ Heat Equation


$$M^{\kappa} = \sum \phi S_{\beta} \rho_{\beta} X_{\beta}^{\kappa}$$

$$M^{h} = (1 - \phi)\rho_{R}C_{R}T + \phi \sum_{\beta}S_{\beta}\rho_{\beta}u_{\beta}$$

$$F_{\beta} = -k_0(1 + \frac{b}{P_{\beta}})\frac{k_{r\beta}\rho_{\beta}}{\mu_{\beta}}(\nabla P_{\beta} - \rho_{\beta}g)$$

$$F^{h} = -[(1-\phi)K_{R} + \phi \sum_{\beta=1,2,3} S_{\beta}K_{\beta}]\nabla T$$
$$+ f_{\sigma}\sigma_{0}\nabla T^{4} + \sum_{\beta=1,2} h_{\beta}F_{\beta}$$

Technical Approach

$$\frac{d}{dt} \int_{V} M dV = \int_{\Gamma} \mathbf{F} \bullet \mathbf{n} d\Gamma + \int_{V} q dV$$

U.S. DEPARTMENT OF

Energy Efficiency & Renewable Energy

$$\int_{V_n} M dV = V_n M_n$$

$$\int_{\Gamma_n} F \bullet nd\Gamma = \sum_m A_{nm} F_{nm}$$

$$\frac{dM_n}{dt} = \frac{1}{V_n} \sum_m A_{nm} F_{nm} + q_n$$

ENERGY Energy Efficiency & Renewable Energy

Stress Dependent Rock Properties

- Apply the continuum modeling approach to simulate multiphase fluid and heat flow, coupled with rock deformation in fractured and porous rock
- Develop or adopt constitutive correlations for describing how rock properties (intrinsic permeability, porosity, fracture aperture, capillary pressure, etc.) change with effective stress, fluid pressure, temperature, and other state variables
- Porosity and permeability of porous rock and fractures in an EGS system are assumed to correlate with the mean effective stress (σ'_m)

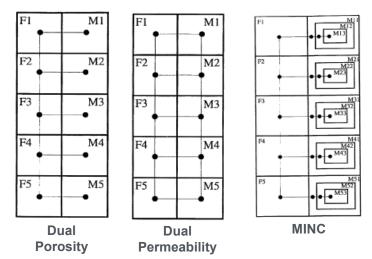
$$\phi = \phi(\sigma'_m, T) \qquad k = k(\sigma'_m, T) \qquad Pc = Pc_0\left(\frac{\sqrt{k_i/\phi_i}}{\sqrt{k/\phi}}\right)$$

Ref: Rutqvist et al. 2002; Wu et al. 2008

Chemical Reaction

- Aqueous-based reservoir stimulation is likely to promote dissolution of some rock minerals, while precipitating others, and lead to large impact on the permeability of the fracture network
- Mineral dissolution and precipitation are considered under kinetic conditions and The temperature dependence of the reaction rate constant can be expressed via an Arrhenius equation
- **Transport equations:** Mass balance (transport) equations for chemical components can be expressed as:

$$\frac{d}{dt} \int_{V_n} \mathbf{M}^{\kappa} dV_n = \int_{\Gamma_n} \mathbf{F}^{\kappa} \bullet \mathbf{n} d\Gamma_n + \int_{V_n} q^{\kappa} dV_n + \int_{V_n} R^{\kappa} dV_n$$


where κ is chemical component index, such as Ca²⁺, SiO₂(aq), and R is mass transfer from solid phases such as calcite and silica mineral dissolution and precipitation.

• Chemical reactions are considered as secondary equations

ENERGY Energy Efficiency & Renewable Energy

Fracture Models

• Generalized dual-continuum methodology: treats fracture and matrix flow and interactions using a multi-continuum numerical approach

- The Approach can be applied for
 - Discrete fracture i.e. hydraulic fracture (man made) and faults
 - Fracture network or naturally fractured reservoirs

Task 1: Development of framework model

- The work has started on the formulation for the framework model.

Task 2: Rock Deformation Module

 Literature survey of laboratory and field studies relating rock deformation to flow properties

Task 3: Chemical Reaction Module

 The work has started on the selection of chemical species and model incorporation coding.

Task 4: Parallel Computation Scheme

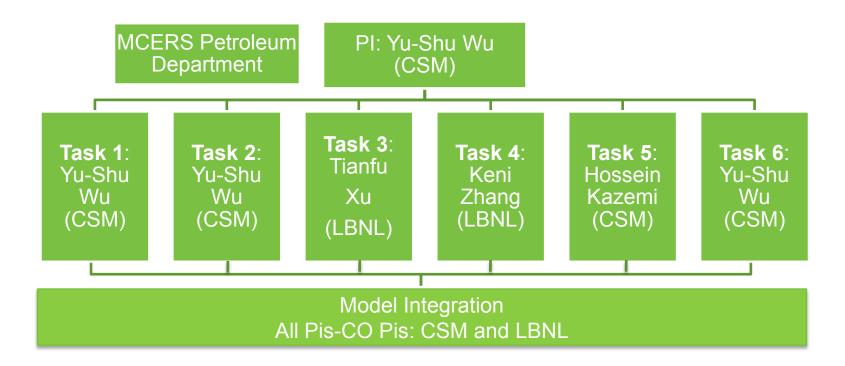
- The work has started on the domain partitioning.

Task 5: Fracture Models

 The work has started on the conceptual modeling development of fractured reservoirs.

Project Schedule

Tasks		2010			2011				2012			
		Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4
Task 1: Development of framework model		1				1		1	1			
Phase I- Formulation and coding												
Phase II-Finalizing program												
Task 2: rock deformation module												
Phase I-Literature review												
Phase I-Formulation and coding												
Phase II-program and initial verification												
Phase III-implementation and verification												
Phase IV-integration and application												1
Task 3: chemical reaction module												+
Phase I-selection of chemical species and incorporation coding												
Phase II-model testing and verification												
Phase III-finalizing coding, integration and documentation												
Task 4: parallel computing scheme										-	-	-
Phase I: Domain partitioning	_											
Phase II: Jacobian matrix calculations												
Phase III Parallel solver implementation												
Phase IV: Software test and verification												
Phase V: Model integration												
Task 5: fracture models										-	-	
Phase I-Conceptual model development	_											
Phase II-formulation and coding												
phase III verification and improvement												
phase IV integration and application												
Task 6: verification and application												
Phase I: against other simulators												
Phase II: against lab data									1			
Phase III: against field data												


Uncompleted Task

- The research will be carried at Colorado School of Mines (CSM) and at Lawrence Berkeley National Laboratory (LBNL)
- To ensure effective communication between CSM and LBNL and among the PI and CO-PI's, the Project PI: Dr. Yu-Shu Wu plans to work two days every month at LBNL over the three-year period of the project
- Monthly teleconferences will be held among the PI and CO-PI's to exchange information, update progress, discuss problems, and coordinate efforts

U.S. DEPARTMENT OF EI

Energy Efficiency & Renewable Energy

Project organization chart

- The reservoir simulator developed from this project will be among the first rigorous fully-coupled hydro-thermal-mechanical-chemical (THMC) reservoir simulator.
- This simulator will substantially enhance our ability to characterize EGS systems and provide practical approaches to assess the following:
 - Long-term performance
 - Optimum design
 - Operation strategies, and
 - Commercial feasibility