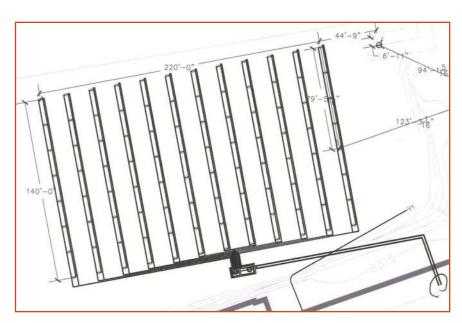


CNCC Craig Campus Geothermal Project – Craig, Colorado

96-well closed loop GHP well field to provide geothermal energy as a common utility for a new community college campus.

Dr. John Boyd, President CNCC



Overview

- Project Conceptual Development
- Energy Audit Findings Justifies GHP vs. Traditional HVAC
- Design and Construction of Well Field
- Campus Construction
- Monitoring & Reporting

Ground Source Heat Pumps Demonstration Projects

May 20, 2010

Project Conceptual Development

- CNCC working with ESCO Chevron Energy Solutions on Energy Performance Contract for Rangely, CO main campus.
- Chevron suggested feasibility study of GHP technology for new Craig Campus and conducted energy analysis modeling with Architect and Engineers.
- Grant application was successful.

Energy Audit Findings

- Test Well Resulted in Formation Thermal Conductivity = 1.28 Btu/hr-ft-°F
- Compared Economics of GHP with Traditional HVAC design. Analysis used engineering design data with Trace 700 modeling.
 - Results: GHP Closed-loop vertical well configuration life-cycle cost analysis result was positive.
- GHP system for Academic Building and the Career Technical Center buildings requires loop water flow of 1,050 gpm.

Initial well field configuration was 82-wells @ 400-ft deep, but final design is 96-wells @ 375-ft deep.

Energy Audit Findings

• Energy Analysis demonstrated the following results:

Alternative 1: "Baseline" traditional HVAC

Alternative 2: GHP System with Rooftop Unit approach

ENERGY COMPARISON					
	Description	Electric	Natural Gas		
		Energy Use	Use		
		(kwh)	(kbtu)		
Alternative	Annual Use				
1	Baseline (ASHRAE 90.1-04 Bldg)	926,791	2,372,539		
2	GSHP (RTU Approach)	712,520	169,053		

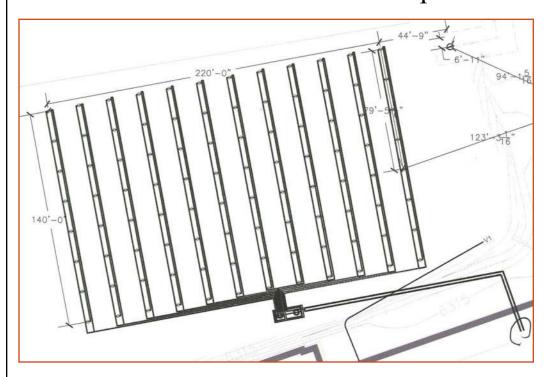
HEATING / COOLING LOAD COMPARISON					
	Peak	Block	Peak		
	Cooling	Cooling	Heating		
	(tons)	(tons)	(Mbh)		
Alternative					
1	204.4	138.3	3,233.3		
2	135.2	135.2	3,010.8		

Energy Audit Findings

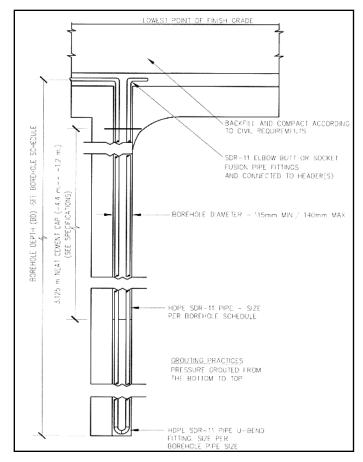
Cost Savings

		Elect	ric	Nat	ural Gas	Ele	ectric	1	Totals Totals
		Energy	Use		Use	De	mand		
		(\$)			(\$)		(\$)		(\$)
Alternative	Cost Savings								
1	Baseline (ASHRAE 90.1-04 Bldg)	\$	-	\$	-	\$	-	\$	-
2	GSHP (RTU Approach)	\$ 18,	524	\$	19,311	\$	-	\$	37,835

Emissions


ENVIRONMENTAL IMPACT COMPARISON				
Emissions	CO2	SO2	Nox	
	(lbm/yr)	(gm/yr)	(gm/yr)	
Alternative				
1	2,995,721	4,039	4,528	
2	2,317,546	3,125	3,503	
Reductions	CO2	SO2	Nox	
	(lbm/yr)	(gm/yr)	(gm/yr)	
Alternative				
1	-	-	-	
2	678,175	914	1,025	

Design and Construction of Well Field


Well Field Construction commenced March 2010 and is

nearly complete.

• 96-Wells, 375-feet deep.

Ground Source Heat Pumps Demonstration Projects

May 20, 2010

Design and Construction of Well Field

Ground Source Heat Pumps Demonstration Projects

Campus Buildings Construction

LEARNING RESOURCE CENTER / SOUTHERN ENTRY

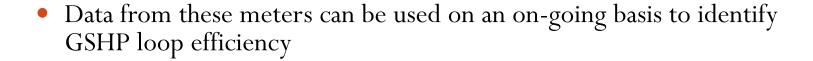
Campus Buildings Construction

EAST ENTRY / CAREER TECH

Monitoring & Reporting

Summary of Data to be gathered for Analysis:

Academic Building


- Whole building electric meter (kWh & kW).
- Whole building natural gas meter (Therms).

Career Tech Building

- Whole building electric meter (kWh & kW).
- Whole building natural gas meter (Therms).

GSHP Loop:

- Combined supply loop temperature supply (°F).
- Combined return loop temperature return (°F).
- Combined loop flow (GPM).

