

Temperature and RH Targets

Vishal O. Mittal Florida Solar Energy Center

High Temperature Membrane Working Group Meeting, San Francisco Sept. 14, 2006

This presentation does not contain any proprietary or confidential information

			Calendar year		
Units	2004	2005	2010		
	Status				
S/cm	0.1	0.1	0.1		
S/cm	0.07	0.07	0.07		
S/cm	0.01	0.01	0.01		
°C	≤ 80	≤ 120	≤ 120		
kPa	50	25	(1.5)		
	S/cm S/cm S/cm °C	Units 2004 Status S/cm 0.1 S/cm 0.07 S/cm 0.01 °C ≤ 80	Units 2004 Status 2005 S/cm 0.1 0.1 S/cm 0.07 0.07 S/cm 0.01 0.01 °C ≤ 80 ≤ 120		

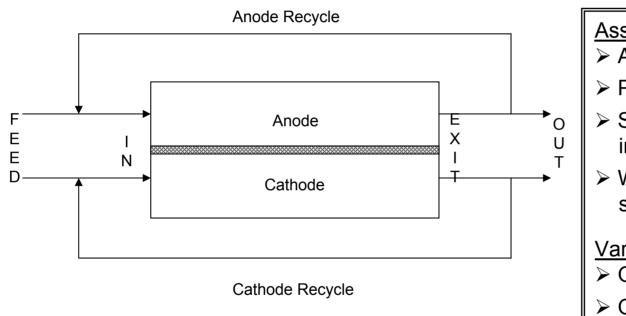
50%RH at 25°C 0.8%RH at 120°C

Fuel Cell Technologies Roadmap, Aug. 10, 2005.

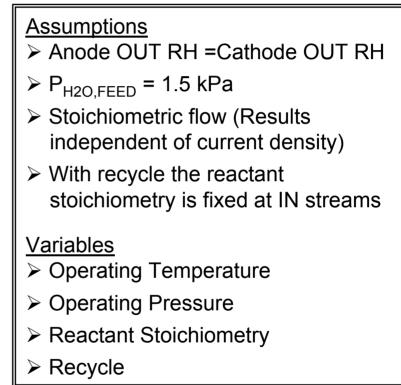
http://www.uscar.org/consortia&teams/techteamhomepages/FC.htm

High Temperature, Low Relative Humidity Membrane Program Goals

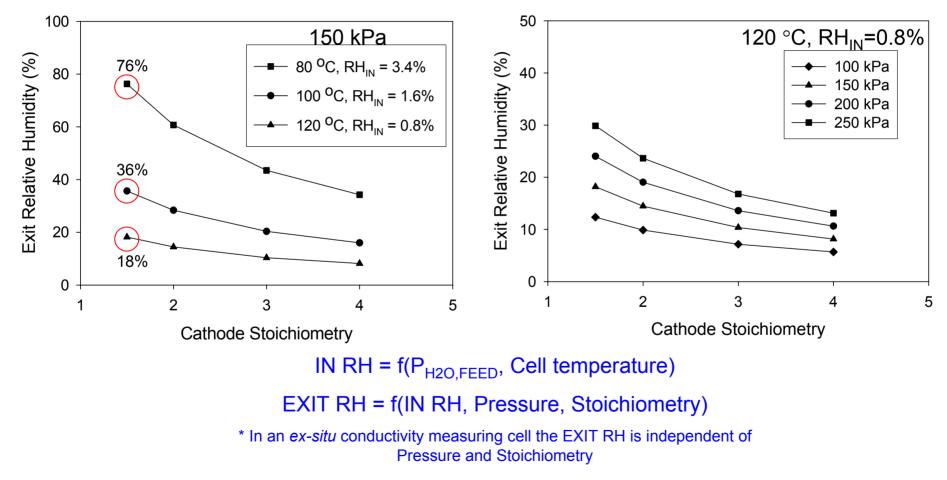
Milestone	Temperature	Relative Humidity	Conductivity (S/cm)
3Q Year 2	Room Temperature	80%	0.07
3Q Year 3 – Go/No-Go Decision Point	120°C	N/A	0.1


 $K_{\text{membrane}} = f(\text{Tcell}, \text{RH})$ 0.07 = f(25°C, 80%) 0.1 = f(120°C, ??RH) \longrightarrow RH Unknown

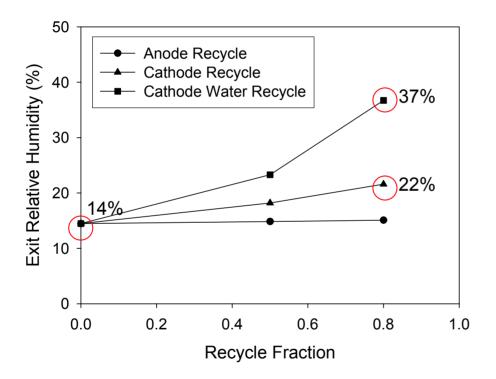
 $\begin{array}{l} \mathsf{RH} = \mathsf{f}(\mathsf{Cell}/\mathsf{Stack} \ \mathsf{operating} \ \mathsf{conditions}) \\ \mathsf{RH}_{\mathsf{FuelCell}} = \mathsf{f}(\mathsf{T}_{\mathsf{cell}}, \, \mathsf{P}_{\mathsf{H2O},\mathsf{in}}, \, \mathsf{P}_{\mathsf{cell}}, \, \mathsf{Stoichiometry}, \, \mathsf{Internal} \ \mathsf{Humidification}, \, ..) \end{array}$


Membrane testing conditions - What is the RH ??

Water Balance Model

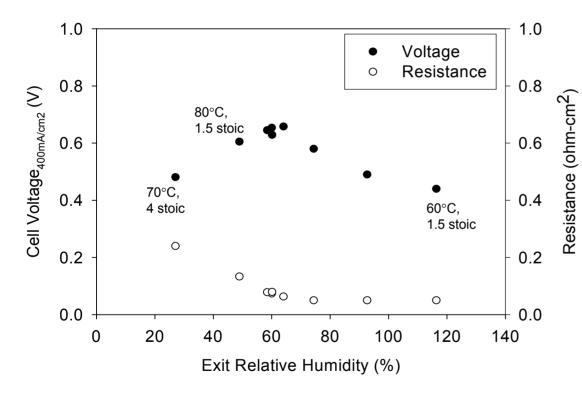

- FEED External input to cell/stack
- IN Internal input to cell
- EXIT Output from the cell
- OUT External output streams from the cell

Effect of Temperature and Pressure (No Recycle)



Stack Internal Humidification (With Recycle)

120°C, 150 kPa, H_2 stoic = 1.3, Air stoic = 2, $P_{H2O,FEED}$ = 1.5 kPa


* Recycle Fraction – Fraction of EXIT stream that is recycled

- Water generated in the fuel cell can be recycled to increase the RH
- Cathode recycle will deplete the oxygen partial pressure
- Water in the cathode exit stream can be separated from air by using a condenser/membrane
- 80% cathode water recycle increases the Exit RH to 37% compared to 14% RH with no recycle

Effect of Operating Conditions on Conductivity and Performance

Cell temperature range = 60-80°C, Pcell =100 kPa, No external humidification, H₂ stoic =1.3, Air stoic range = 1.5-4, Active Area = 5cm²

- Variation in resistance ~ Factor of five
- In the range of temperatures and stoichiometry tested the Exit RH varies between 27% -116%
- At low temperatures (<80°C) with appropriate stoichiometry reasonable performance can be obtained from the cell with no external humidification
- Performance loss due to flooding and ohmic loss

* Exit RH calculated using the water balance model on Slide 4

Summary

- The RH in an operating fuel cell is dependent upon the operating conditions (Temperature, Pressure, Inlet water vapor partial pressure, Stoichiometry) and stack design (Recycle)
- Range of conditions need to be specified at which the membrane could be tested to measure the conductivity
- The specified RH should be the effective RH to which the membrane is exposed during testing