Technical Assessment of Organic Liquid Carrier Hydrogen Storage Systems for Automotive Applications

R. K. Ahluwalia, T. Q. Hua, and J-K Peng Argonne National Laboratory, Argonne, IL 60439

M. Kromer, S. Lasher, K. McKenney, K. Law, and J. Sinha TIAX LLC, Lexington, MA 02421

June 21, 2011

Executive Summary

In 2007-2009, the DOE Hydrogen Program conducted a technical assessment of organic liquid carrier based hydrogen storage systems for automotive applications, consistent with the Program's Multiyear Research, Development, and Demonstration Plan. This joint performance (ANL) and cost analysis (TIAX) report summarizes the results of this assessment. These results should be considered only in conjunction with the assumptions used in selecting, evaluating, and costing the systems discussed here and in the Appendices.

Organic liquid carriers (LC) refer to a class of materials that can be reversibly hydrogenated in large central plants using established industrial methods with high efficiency through recovery and utilization of the heat liberated in the exothermic hydrogenation reaction [1, 2]. The hydrogenated carrier (LCH₂) is delivered to the refueling station for dispensing to the vehicles. On demand, hydrogen is released from LCH₂ in a catalytic reactor on-board the vehicle and the liquid carrier (LC) is recycled to the central plant for rehydrogenation. The challenge has been to find suitable organic carriers that have sufficient hydrogen capacity, optimal heat of reaction (Δ H), rapid decomposition kinetics, low volatility and long cycle life, and that remain liquid over the working temperature range. Air Products and Chemicals Inc (APCI) investigated many candidates for potential liquid carriers but no one material could satisfy all the requirements for a viable hydrogen storage system.

We based our assessment of liquid organic carriers on N-ethylcarbazole ($C_{14}H_{13}N$), an early APCI candidate molecule, recognizing that a practical storage system cannot be built with this polycyclic aromatic hydrocarbon. The assessment, however, does show the potential of meeting the storage targets with other yet-undiscovered organic liquid carriers that may have the right properties. We analyzed an LCH₂ hydrogen storage system with a capacity of 5.6-kg usable H₂ for its potential to meet the DOE 2010, 2017, and ultimate hydrogen storage targets for fuel cell vehicles [3]. The analysis assumed Year 2009 technology status for the major components and projected their performance in a complete system. The analysis also projected the system cost at production volumes of 500,000 vehicles/year. The presentations by Argonne and TIAX describing their analyses in detail are given in Appendices A and B, respectively. Key findings are summarized below.

On-board Assessments

We developed a trickle-bed reactor model for on-board release of hydrogen from perhydro Nethylcarbazole ($C_{14}H_{19}N$) and validated the model against APCI's test data. We also developed a model for the on-board hydrogen storage system and evaluated the potential performance of the system with respect to storage capacity and efficiency. Figure 1 shows a schematic of the fuel cell system with organic liquid carrier hydrogen storage. The system includes a circuit with an oil-based heat transfer fluid and a combustor to supply the ΔH for thermal decomposition of perhydro N-ethylcarbazole. It shows one method of integrating the storage system with the fuel cell system by controlling the hydrogen utilization in such a manner that the thermal energy needed for the dehydrogenation reaction is provided by burning the remaining hydrogen with the spent cathode air. Waste heat from the fuel cell stack (or an internal combustion engine power plant) cannot be used for this purpose because hydrogen desorbs rapidly from N-ethylcarbazole only at a temperature (>200°C) higher than the temperature at which the waste heat is available.

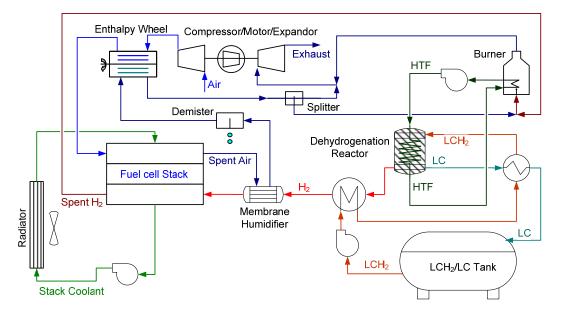


Figure 1 Automotive fuel cell system with organic liquid carrier hydrogen

Our analysis showed that a dehydrogenation reactor with a pelletized, palladium (Pd) on lithium aluminate catalyst produces unacceptably low conversions of the hydrogenated organic liquid carrier due to mass transfer resistances through the pore structure. To achieve conversions >95%, a compact on-board dehydrogenation reactor will likely require dispersing the catalyst on a high surface area support and operating the reactor at a liquid hourly space velocity (LHSV) >20 h⁻¹. To power an 80-kW_e fuel cell system using perhydro N-ethylcarbazole ($\Delta H \approx 51 \text{ kJ/mole H}_2$), the reactor needs to produce 2.4 g/s of H₂, of which 1.6 g/s is electrochemically oxidized in the fuel cell system, and 0.8 g/s is burned to provide the thermal energy needed for the dehydrogenation reaction.

For N-ethylcarbazole (material capacity of 5.8- wt% H_2), the system-level storage capacities are 4.4 wt% and 35 g-H₂/L (on a stored H_2 basis), which translate to 2.8 wt% and 23 g/L of usable

hydrogen (hydrogen converted to electricity in the fuel cell). These usable storage capacities fail to meet the 2010 targets of 4.5 wt% and 28 g/L.

Our system analysis is based on a volume-exchange tank with a flexible bladder to separate the fresh and spent fuels. Although this concept appears feasible, it has not been demonstrated in practice. We have assumed that an organic liquid carrier with a melting point lower than -40° C will be found so that the fuel and the carrier remain liquid at all ambient conditions. N-ethylcarbazole, however, melts between 66 and 70° C and would require that the tank be heated to prevent solidification. The downflow trickle-bed reactor configuration is likely inappropriate for use on-board vehicles. It would be desirable to build and analyze a compact horizontal flow reactor taking advantages of the recent developments in microchannel heat exchanger technology. Similarly, a more active, robust, non-precious metal catalyst is needed to achieve complete conversion at space velocities exceeding 120 h^{-1} .

The results from our "reverse engineering" analyses suggest that the on-board storage inefficiency can be largely eliminated if we had a liquid carrier with $\Delta H < 40$ kJ/mol and a catalyst that allows rapid dehydrogenation at temperatures below the temperature at which the waste heat is available from the fuel cell stack. The carrier would also need to have a material capacity >7.5-8 wt% H₂ for the storage system to satisfy the 2017 DOE targets of 5.5 wt% gravimetric and 40 g/L volumetric capacities. The intrinsic material capacity would need to be >11 wt% H₂ to meet the ultimate system target of 7.5 wt%.

Performance and Cost Metric	Units	LCH ₂	DOE Targets				
			2010	2017	Ultimate		
System Gravimetric Capacity	wt%	2.8	4.5	5.5	7.5		
System Volumetric Capacity	g-H ₂ /L	23.0	28	40	70		
Storage System Cost	\$/kWh	15.7	TBD	TBD	TBD		
Fuel Cost	\$/gge*	3.27	3-7	2-6	2-4		
WTE Efficiency (LHV**)	%	43.3	60	60	60		

 Table 1
 Summary results of the assessment for organic liquid carrier based hydrogen storage systems compared to DOE targets

*gge: gallon gasoline equivalent

**Lower heating value

The results of the cost assessment showed that the LCH_2 on-board storage system will cost \$15.7/kWh. The main contributor to the onboard system cost was the dehydrogenation reactor, which accounted for nearly 40% of the total system cost. In turn, the dehydrogenation reactor cost was primarily driven by the cost of the palladium catalyst. Other high cost components include pumps, the burner, and the LCH_2 medium itself. The results from multi-variable

sensitivity analysis indicated a likely range of \$14 to \$21.5/kWh. Detailed cost results are presented in the Appendix B. The system capacities and cost results are compared to the DOE targets in Table 1.

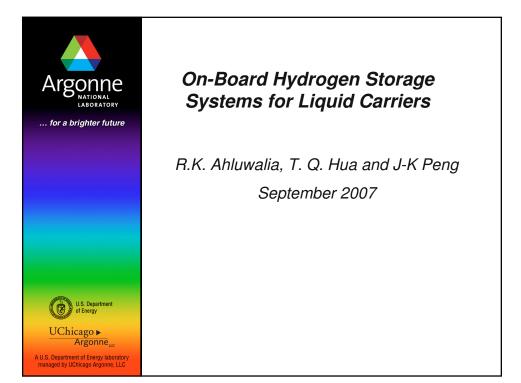
Off-board Assessments

We constructed a flowsheet for rehydrogenation of N-ethylcarbazole in multi-stage, catalytic, trickle-bed reactors, with regenerative intercooling between the stages to achieve a declining temperature profile. Hydrogen is introduced at multiple quench locations within each stage of a reactor to maintain a nearly isothermal temperature profile. In this manner, H_2 far in excess of the stoichiometric amount (15-21 times, depending on the number of stages) is used to absorb the heat of reaction. The excess H_2 is recovered downstream of the final stage, recompressed, mixed with compressed makeup H_2 , and recycled. We considered two scenarios, one in which the heat of reaction is discarded as low-grade waste heat and the second in which an organic Rankine cycle system is used to produce electricity from the waste heat (~1 kWh/kg-H₂ in the liquid carrier).

We estimated that the LCH₂ option has one of the highest well-to-tank (WTT) efficiencies of all hydrogen storage options since regeneration of perhydro N-ethylcarbazole is an exothermic process. The WTT efficiency can be higher than 60% if the waste heat liberated in rehydrogenation can be used to co-produce electricity via the organic Rankine cycle. Our analysis showed that the well-to-engine (WTE) efficiency is 43.3% taking into account the ~68% efficiency of the on-board storage system (i.e., 32% of H₂ produced is burned on-board to provide the dehydrogenation heat of reaction).

The off-board refueling cost of the LCH₂ system was projected to be \$3.27, meeting the 2010 and 2017 targets, as well as the ultimate target of 2-4/kg. In contrast to the on-board system, sensitivity analysis suggested that there are several viable pathways to reducing the off-board refueling cost. These cost reduction opportunities include reducing the cost of the carrier material, reducing hydrogen production costs, or reducing the size of the liquid carrier storage buffer at the regeneration facilities.

Using a series of simplified economic assumptions, the off-board cost estimated was combined with the on-board system base case cost projection of 15.7/kWh H₂ to calculate the fuel system ownership cost on a per-mile basis. The results projected an ownership cost of 0.12/mile for the LCH₂ system. Slightly more than half of this cost was due to the amortized purchased cost of the on-board storage system; the remainder was due to the off-board refueling cost. This projected ownership cost for the LCH₂ system may be compared with about 0.10/mile for the fuel costs of a conventional gasoline internal combustion engine vehicle (ICEV) when gasoline is at 3.00/gal, untaxed.


References

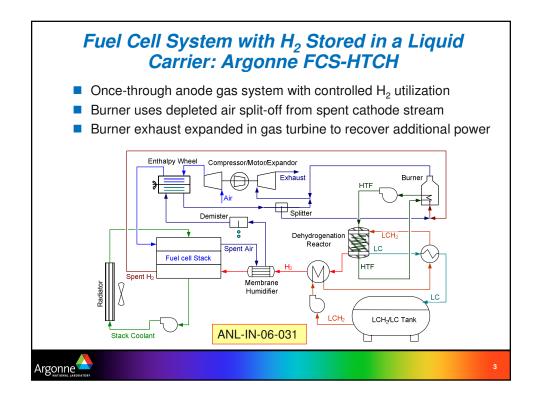
1. Cooper, A. and Pez, G., "Hydrogen Storage by Reversible Hydrogenation of Liquid-Phase Hydrogen Carriers," APCI, 2007 DOE H₂ Program Review, May 2007.

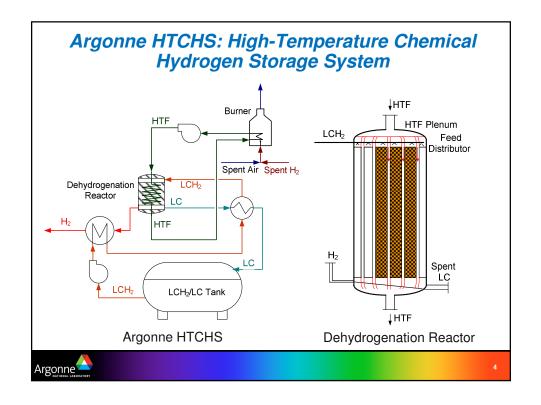
- 2. Toseland, B. and Pez, G., "Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen," APCI, 2008 DOE H₂ Program Review, June 2008.
- 3. "Targets for onboard hydrogen storage systems for light-duty vehicles," US Department of Energy, Office of Energy Efficiency and Renewable Energy and The FreedomCAR and Fuel Partnership, Revision 4.0, p. 9, Sep. 2009.

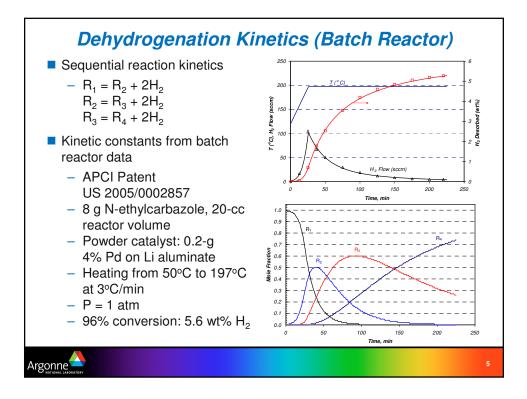
APPENDIX A

Performance Assessment of Organic Liquid Carrier Hydrogen Storage Systems

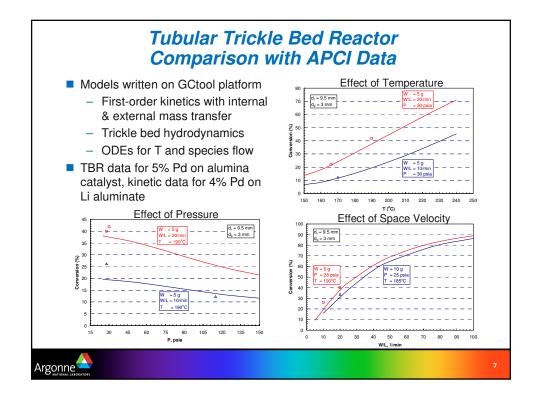
On-Board Hydrogen Storage Systems for Liquid Carriers

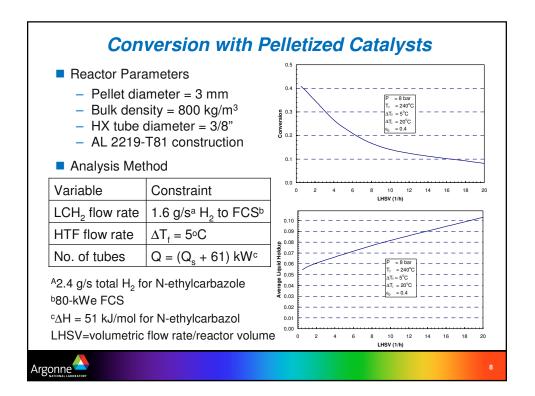

Objective: To determine the performance of the on-board system relative to the storage targets (capacity, efficiency, etc)

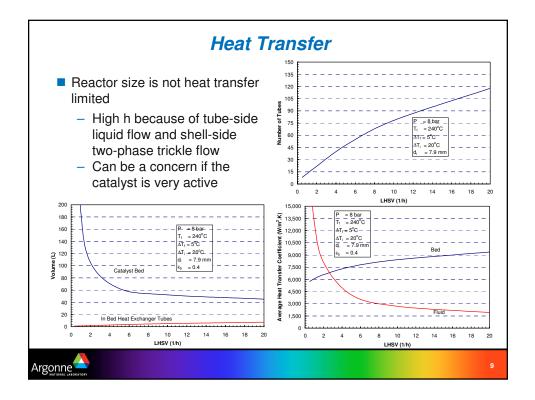

- 1. On-Board System Configuration
- 2. Dehydrogenation Reactor
 - Dehydrogenation kinetics
 - Trickle bed hydrodynamics
 - Dehydrogenation reactor model
 - Reactor performance with pelletized and supported catalysts

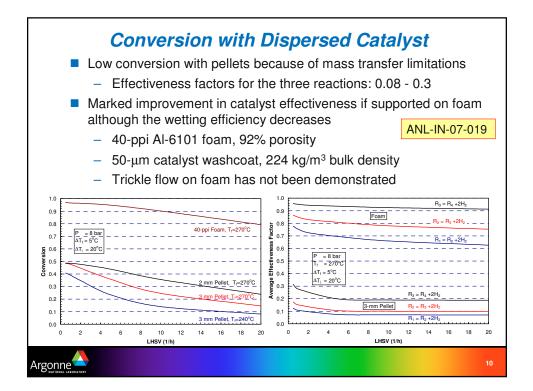

3. System Performance

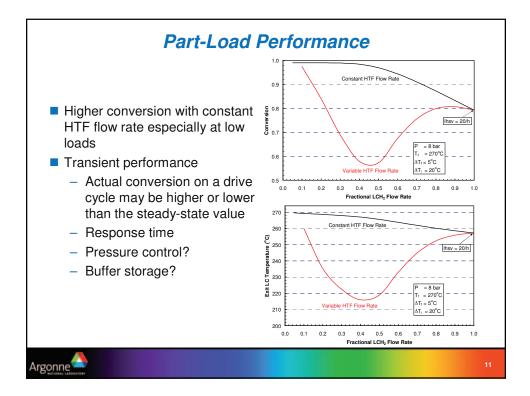
- Storage efficiency
- Storage capacity

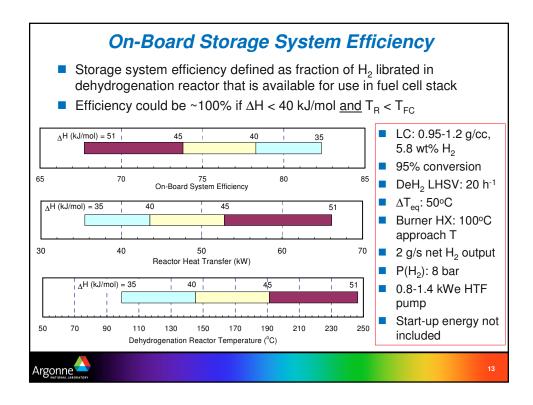

Argonne

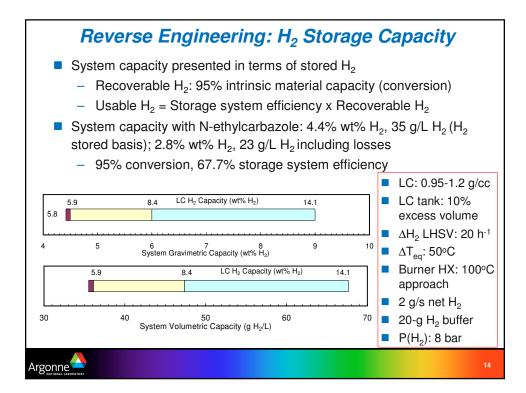


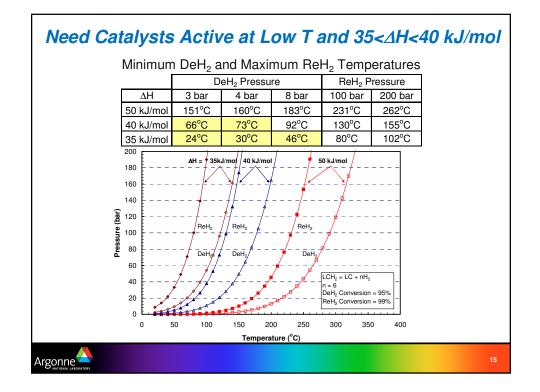


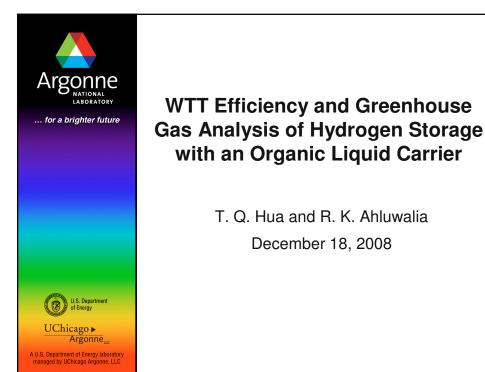


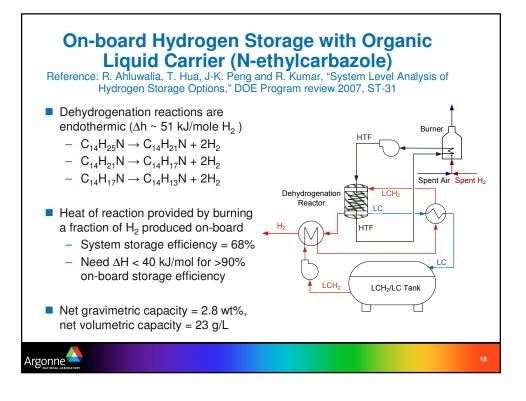

Parameter	Re	Reg	Fr	Fra	Weı	Xı	Xq	St	Stg	Sci	Scq	Ga	Ca	Ca _q	Bi	Pe	Peg	ρ _{g,I}	α	d _{p,r}	ф
Slip factors: f _s , f _v	1	1	1		1	V		V													
Ergun constants: E ₁ , E ₂																				V	1
Liquid-catalyst mass transfer coefficient	1	1						1		1		1							V		
Volumetric liquid-side mass transfer coefficient		1			1			1	1	1			1	1					v	1	
Volumetric gas-side mass transfer coefficient	1	1		1				1			1								1		
Liquid-wall heat transfer coefficient	1			1	1			1								1	1			1	
Bed radial thermal conductivity	1			1	1										V	1	1				
Wetting efficiency	1	1	1		1	1	1	1				1						1	1	1	1
Pressure drop	1	1			1	1						1							1		
Liquid holdup	1	1			1		1												1		
Re Fr We X St Sc	Rey Fro We Loc Sto Sch Ind	Image: Note of the second s						 ρ Density α Bed correction factor 						d _r Φ ε bscri	Rea Sph Voi	actor nerici d fra	diam ity fac ction				

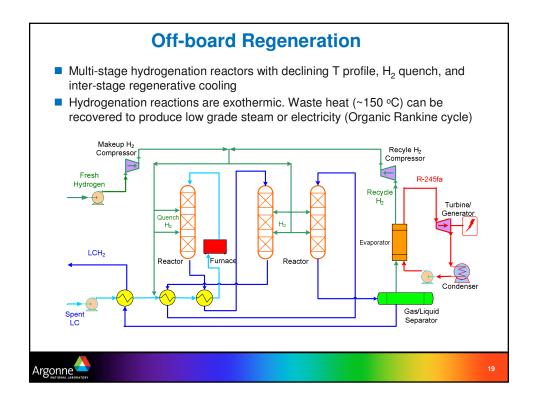


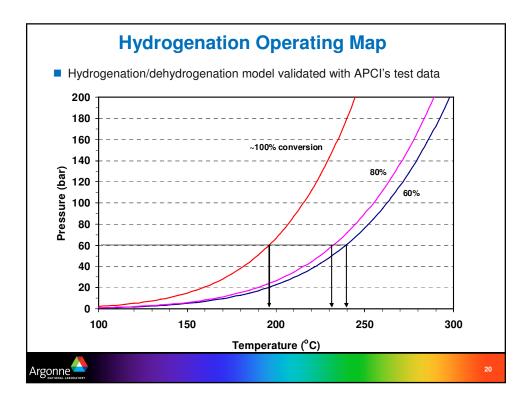





Argonne HICHS:	System Analysis
Dehydrogenation Reactor T _R function of P(H ₂), conversion, Δ H, Δ S, and Δ T _{eq} T rickle flow, 20 h ⁻¹ LHSV Catalyst supported on 40-PPI foam HX tubes with 90° inserts AL-2219-T81 alloy, 2.25 SF 2 cm insulation thickness Heat Transfer Fluid XCELTHERM ® 5 °C Δ T in DeH2-HX, T _{HTF} - T _R = 50°C HEX Burner Non-catalytic, spent H ₂ and 5% excess spent air Counterflow microchannel, inconel 100°C approach temperature H₂ Cooler LCH2 coolant, T_{outlet} = T_{FC} Counterflow, microchannel, SS	Recuperator $LC/LCH2 HX, T_{LCH2} = T_R - 10^{\circ}C$ $Counterflow, microchannel, SS$ LC Radiator $T_{LC} = 70^{\circ}C$ Integrated with FCS radiatorW and V not included in HTCHSLCH2/LC Storage TankSingle tank design, HPDE construction10-kg H2 storage, 10% excess volumePumpsHTF pressure head: 1 barLCH2 pressure head: 8 barH2 SeparationCoagulating filterH2 Buffer Storage20 g H2 at 80°C, P(H2)AL-2219-T81 alloy tank, 2.25 SFMiscellaneous







	Summary										
 Desirable to have 	 Dehydrogenation reactor will need a supported catalyst Desirable to have LHSV > 20 h⁻¹ for >95% conversion May need ΔT > 50°C for compact HX (ΔT=T_{HTF}-T_R) 										
2. Need $\Delta H < 40$ kJ/mol for >90% on-board storage efficiency											
3. Material capacities	to meet system stora	age targets									
	System Capacity ^a										
Material Capacity	Gravimetric	Volumetric									
wt% H ₂	wt% H ₂	g-H ₂ /L									
5.8	4.4	35.1									
5.9	4.5	36.1									
8.4	6.0	47.4									
14.1	9.0	67.6 ^b									
^a Stored H ₂ basis											
^b H ₂ buffer has to d	ecrease for 81 g/L vo	lumetric capacity									
Argonne	<u> </u>		16								
• NATIONAL LABOLATORY											

Operating Conditions and Process Energy Consumption (Per kg H₂ hydrogenated in LC)

Parameter	1-Stage	3-Stage
Temperature, °C	196	240/232/196
Pressure, bar	60	60
Cumulative Conversion	1.0	0.6/0.8/1.0
H ₂ Circulation Ratio	21.7	16.2
Electricity (H ₂ compression), kWh	2.0	1.7
Thermal, MJ	0.8	0.8
Electricity (co-production), kWh	-0.9	-0.9

21

Primary Energy Consumption and WTT Efficiency (Per kg H₂ to Fuel Cell)

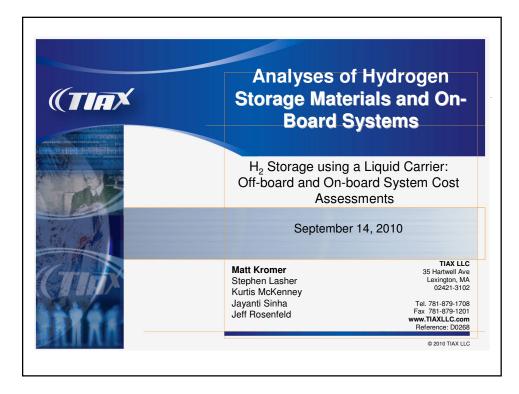
Process	Primary Energy (MJ)
H ₂ Production by SMR	260
Hydrogenation of LC	29
Delivery	2
Electricity Co-production	-16
WTT Efficiency, %	43.2

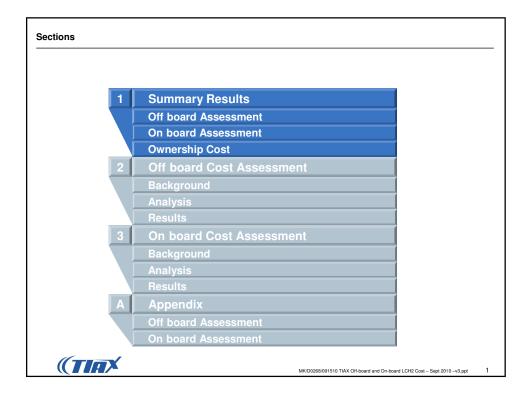
Note: energy consumption and WTT efficiency include on-board system storage efficiency of 68%

Argonne

FCHtool Analysis of Greenhouse Gas Emissions

■ g/kg H₂ hydrogenated in LC


Process	voc	со	NOx	PM10	SO _x	CH4	N ₂ O	CO ₂	GHGs
H ₂ Production (SMR)	1.55	3.62	7.34	2.20	2.71	29.93	0.06	14,068	14,774
Regeneration	0.06	0.17	0.64	0.70	1.29	0.92	0.01	603	627
Delivery	0.01	0.03	0.02	0.01	0.02	0.03	0.00	21	22
Total	1.6	3.8	8.0	2.9	4.0	30.9	0.1	14,692	15,423


g/kg H₂ delivered to fuel cell

Process	voc	со	NOx	PM10	SOx	CH₄	N ₂ O	CO ₂	GHGs
H ₂ Production (SMR)	2.28	5.35	10.84	3.25	4.01	44.21	0.09	20,780	21,823
Regeneration	0.08	0.25	0.94	1.04	1.90	1.36	0.01	891	926
Delivery	0.01	0.04	0.03	0.02	0.03	0.04	0.00	31	32
Total	2.4	5.6	11.8	4.3	5.9	45.6	0.1	21,702	22,781

APPENDIX B

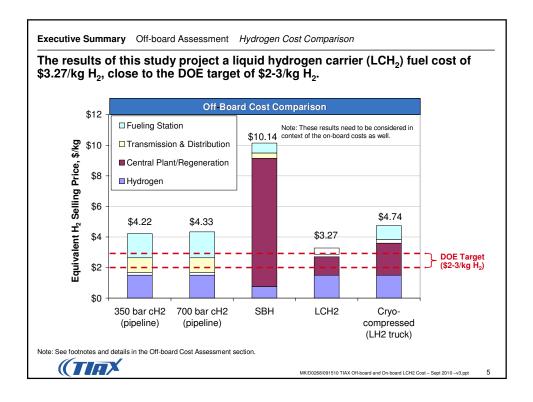
Cost Assessment of Organic Liquid Carrier Hydrogen Storage Systems

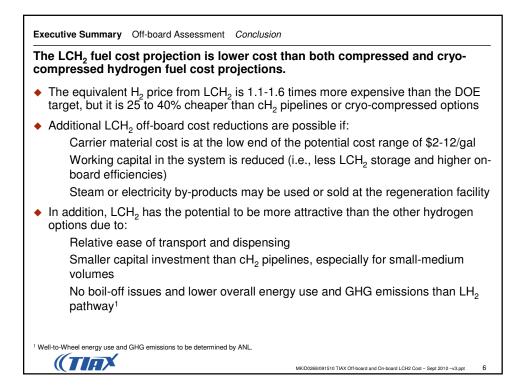
Executive Summary Background Timeline

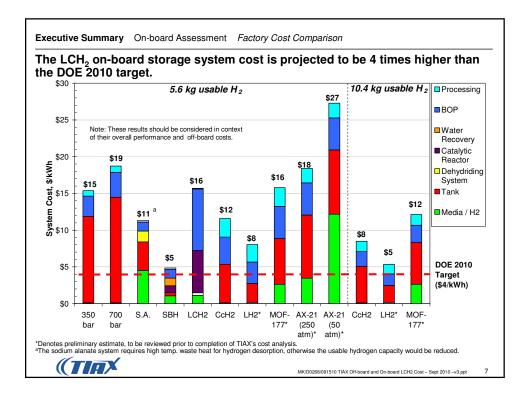
TIAX has been engaged since 2004 in an ongoing effort to perform onboard and offboard analysis of hydrogen storage system costs

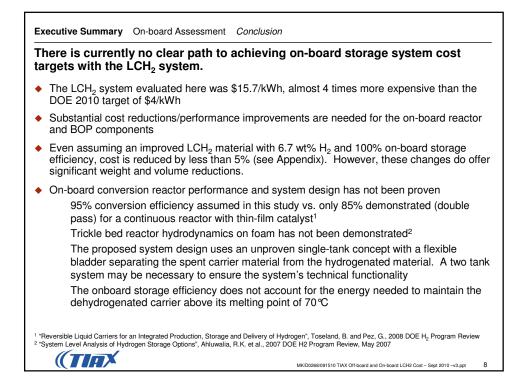
Technology Focus	2004-2007	2008-2010
On-Board Storage System Assessment	Compressed Hydrogen 350-bar 700-bar Metal Hydride Sodium Alanate Chemical Hydride Sodium Borohydride (SBH) Magnesium Hydride (MgH ₂) Cryogenic Hydrogen Cryo-compressed	Compressed Hydrogen 350-bar – update 700-bar – update Chemical Hydride Liquid Hydrogen Carrier (LCH ₂) Cryogenic Hydrogen Cryo-compressed – update Liquid Hydrogen (LH ₂) – WIP Activated Carbon MOF-177
Off-Board Fuel Cycle Assessment	 Compressed Hydrogen 350-bar 700-bar Chemical Hydride Sodium Borohydride (SBH) 	 Compressed Hydrogen 350-bar – update 700-bar – update Chemical Hydride Liquid Hydrogen Carrier (LCH₂) Ammonia Borane Cryogenic Hydrogen Cryo-compressed Liquid Hydrogen (LH₂) – WIP
Note: Previously analyzed systems will contin	ually be updated based on feedback and new informa	ation. 91510 TIAX Off-board and On-board LCH2 Cost – Sept 2010 –v3.ppt 2

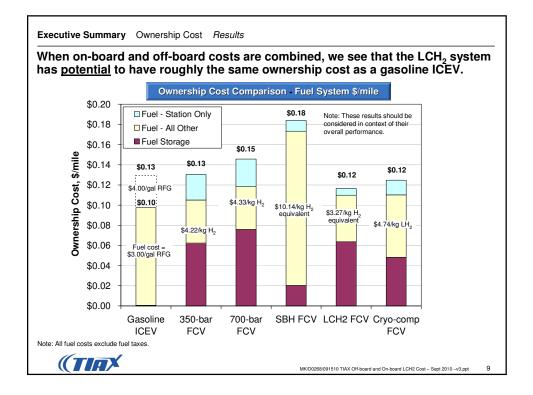
Over the course of this project, we have evaluated on-board and off- board hydrogen storage systems for 11 storage technologies.												
	To Date	cH ₂	Alanate	MgH_2	SBH	LCH ₂	CcH ₂	LH ₂	AC	MOF- 177	Cold Gas	AB
	Review developer estimates	1	√		1	٧	1	V	1	1		
On-	Develop process flow diagrams/system energy balances (ANL lead)	V	V		1	1	V	٨		1		
Board	Performance assessment (ANL lead)	٧	1		1	1	1	√*		1		
	Independent cost assessment	1	√		1	1	1	√*	√*	√*		
	Review developer estimates	1		1	1	1	1	1			1	1
Off-	Develop process flow diagrams/system energy balances	V		V	V	1					1	٧
Board	Performance assessment (energy, GHG) ^a	٧			1	1					1	
	Independent cost assessment ^a	1			1	1		1			1	
	Ownership cost projection ^a	V			V	V		1		1	√*	
Overall	Solicit input on TIAX analysis	٨	V		1	1	V	√*	1	1		
	Analysis update	1			1		1	WIP		WIP		

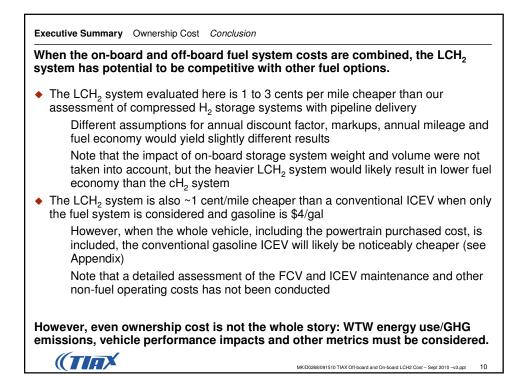


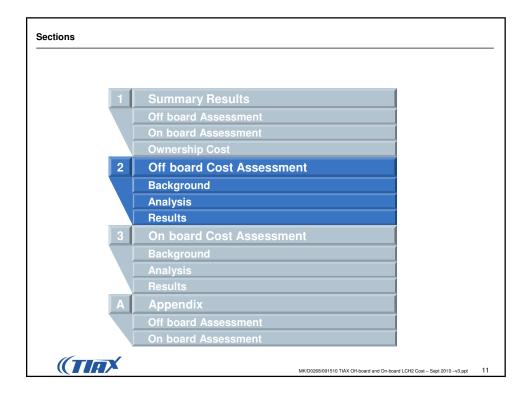

This report summarizes TIAX's assessment of the off-board fuel cost and the onboard high-volume (500,000 units/yr) manufactured cost of hydrogen storage systems using a liquid hydrogen carrier (LCH_2)

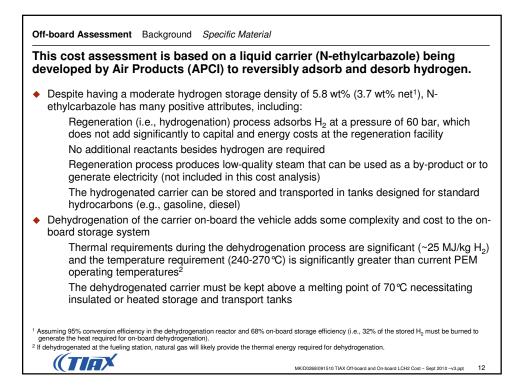

- Scope:
 - Onboard LCH₂ Storage System: Cost estimates for an onboard storage system using 5.8 wt% N-ethylcarbazole
 - Off-board Fuel Costs: Cost estimates for the price of hydrogen generated from steam-methane reforming of natural gas and transported in an Nethylcarbazole liquid hydrogen carrier medium
- Approach:
 - Onboard cost analysis is based on an onboard system design developed by Argonne National Laboratory to meet critical performance criteria.
 - Onboard costs are projected from bottom-up estimate of raw material costs and manufacturing process costs, plus purchased components balance-ofplant components
 - Off-board cost estimates use a modified version of the H2A Components model to incorporate design parameters provided through discussions with industry

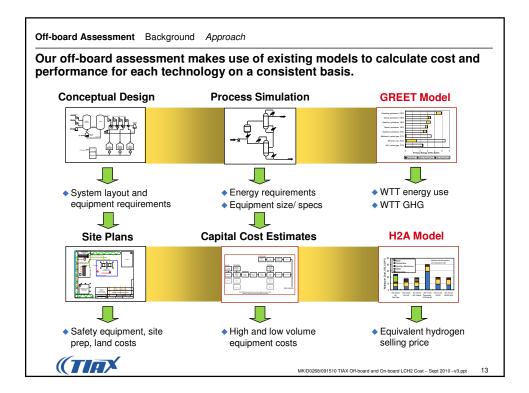

MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost - Sept 2010 -v3.ppt

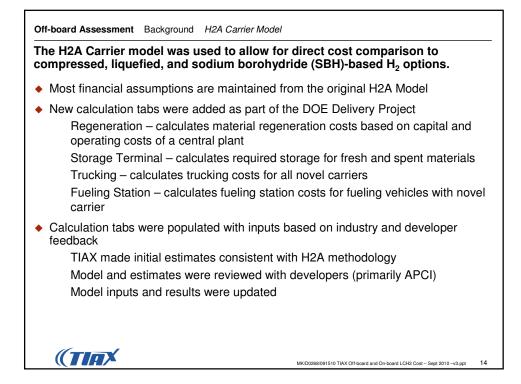

(TIAX

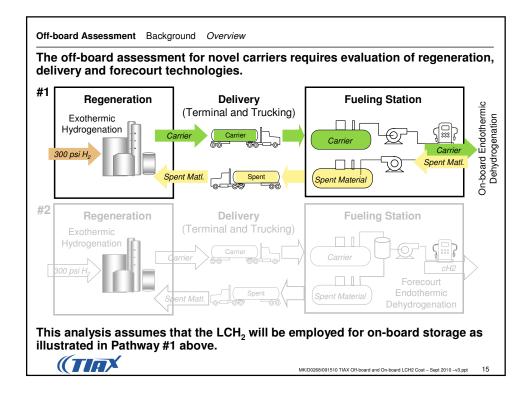


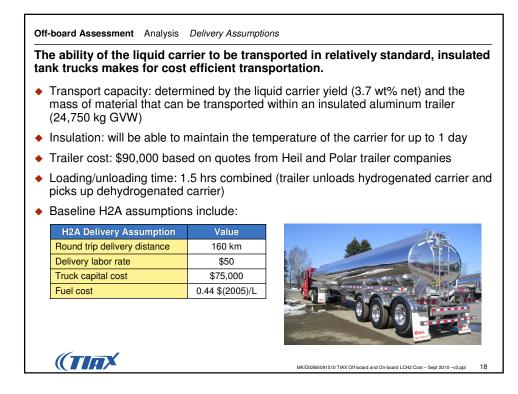


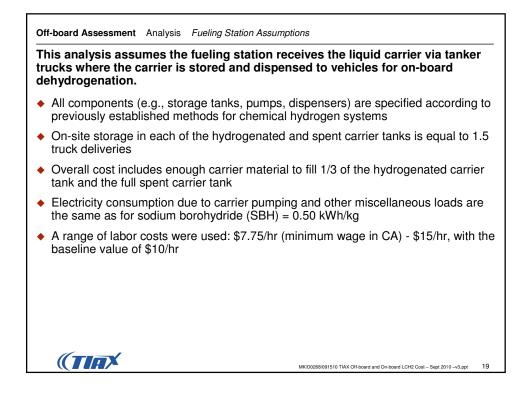


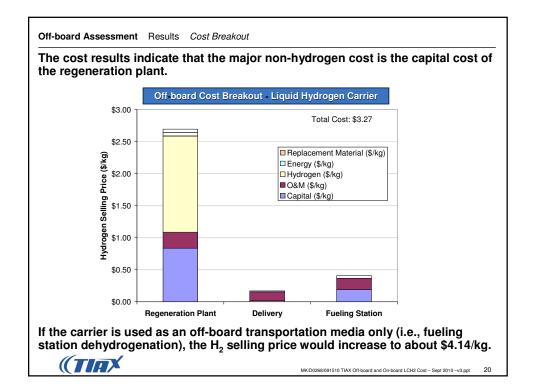


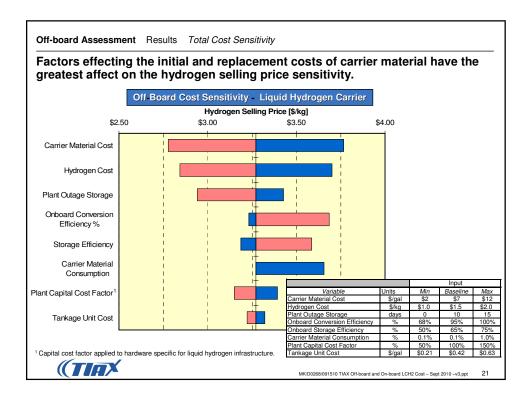


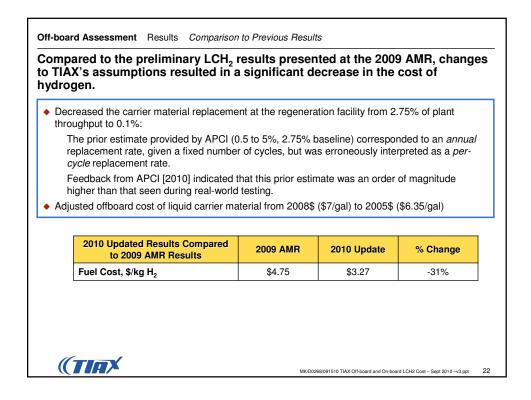


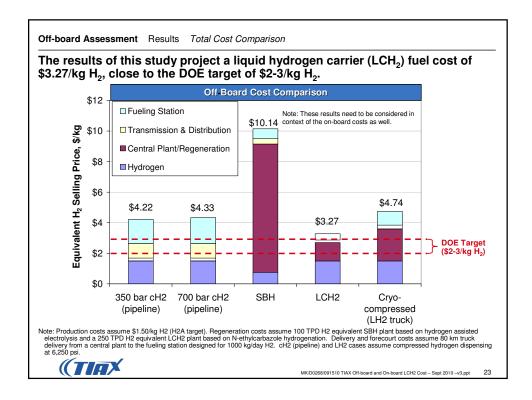

Off-board Assessment	Analysis Regenerati	on Cost Assumptions
The regeneration fa purification and sto		quipment and material for hydrogenation,
No losses are as Material Storage Tan Storage for a 10 demand) is inclu Equal amount of Two quarantine Assumed cost: \$ Carrier Material	ssumed lks I-day plant shutdown ided for hydrogenated f storage included for tanks are included fo \$0.42/gal (based on s	,
estimáte, in 2008 Material replace	8\$) ment is estimated to I	between \$2-12/gal; \$7/gal used for baseline (industry oe 0.1% of plant throughput (APCI estimate) d to fill all hydrogenated storage tanks
and power and i Range of 50-150 Catalyst Loading and	Instrumentation (com 0% of estimated equip 1 Replacement	age, distillation, heat exchangers, fluid power equipment, bination of H2A and industry cost estimates) boment capital cost used for sensitivity analysis
estimate)	e based on material p	kg and cost for replacement catalyst is \$155/kg (industry processed: 350,000-1,000,000 kg _m /kg _c ; 500,000 baseline
(TIAX		MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost – Sept 2010 – V3.ppt 16


Off-board Assessment	Analysis	Regeneration Capital Equipment


Capital cost estimates are derived from developer feedback and baseline H2A model assumptions.

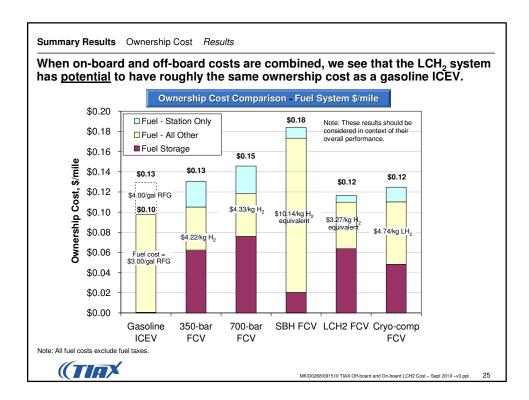

Regeneration Plant Capital Equipment	Installed Cost (\$millions)	Basis
Carrier Material	\$258	Personal communication with APCI, 2008
Indirect Capital (permitting, project contingency, engineering, site prep, land)	\$155	H2A Baseline
Storage (Including quarantine)	\$41.7	Personal communication with APCI, 2008
Piping & Instrumentation	\$25.7	Personal communication with APCI, 2008
Catalyst	\$21.3	Personal communication with APCI, 2008
Compressors	\$14.8	H2A Baseline
Pumps	\$6.8	Personal communication with APCI, 2008
Reactor	\$1.5	Personal communication with APCI, 2008
Heat Exchangers	\$1.4	Personal communication with APCI, 2008
Distillation	\$0.2	Personal communication with APCI, 2008
Total	\$526	

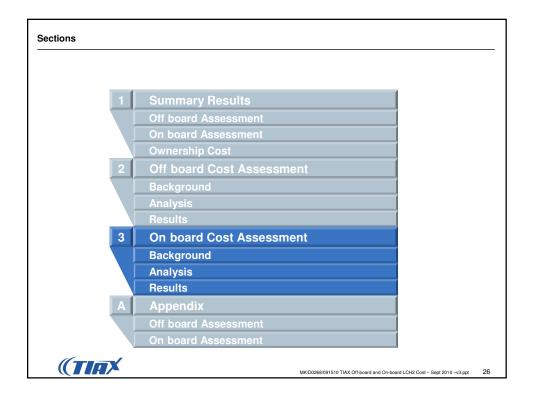

(TIAX

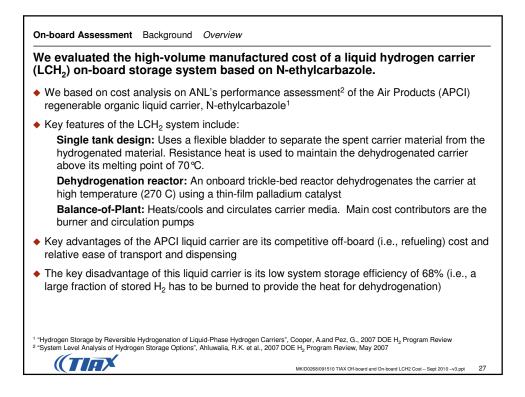


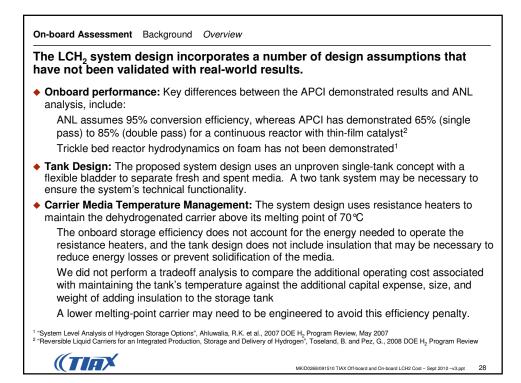
Off-board Assessment Analysis Ownership Cost Assumptions

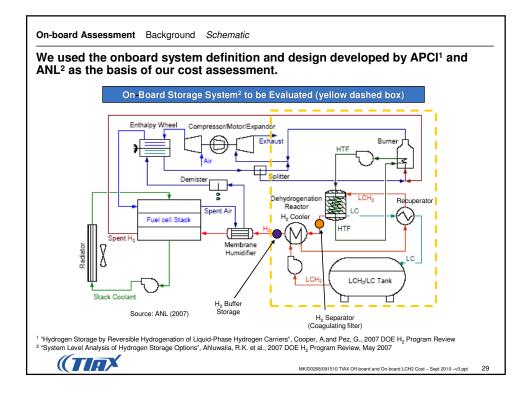
"Ownership cost" provides a useful metric for comparing storage technologies on an equal footing, accounting for both on- and off-board (i.e., refueling) costs.


	C = Factory Cost of the On-board Storage System DF = Discount Factor (e.g., 15%) FC = Fuel Cost of the Off-board Refueling System FE = Fuel Economy (e.g., 62 mi/kg)	
Gasoline ICEV	Hydrogen FCV	Basis/Comment
15%	15%	Input assumption
1.74	1.74	Assumed mark-up from factory cost estimates ¹
12,000	12,000	H2A Assumption
1.0	2.0	Based on ANL drive-cycle modeling for mid- sized sedan
31	62	ICEV: Combined CAFE sales weighted FE estimate for MY 2007 passenger cars ²
NA	5.6	Design assumption based on ANL drive-cycle modeling
	Annual Mile Gasoline ICEV 15% 1.74 12,000 1.0 31	ICEV FCV 15% 15% 1.74 1.74 12,000 12,000 1.0 2.0 31 62


¹ Source: DOE, "Effects of a Transition to a Hydrogen Economy on Employment in the United States", Report to Congress, July 2008
² Source: U.S. Department of Transportation, NHTSA, "Summary of Fuel Economy Performance," Washington, DC, March 2007


(TIAX


This ownership cost assessment implicitly assumes that each fuel system and vehicle has similar maintenance costs and operating lifetime.


MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost - Sept 2010 -v3.ppt

Dn-board Assessment Background Bottom-Up Approach		
The high volume (500,000 units/year)	manufactured cost for the LCH ₂ system es, capital equipment, labor, and other	
LCH ₂ Storage System – Major Components	BOP Bottom-up Costing Methodology	
Dehydrogenation Reactor	Develop Bill of Materials (BOM)	
Liquid Carrier Storage Tank	Obtain raw material prices from potential suppliers	
HEX Burner	Develop production process flow chart for key	
• H ₂ Cooler	subsystems and components	
H ₂ Separator	Estimate manufacturing costs using TIAX cost models (capital equipment, raw material price,	
Recuperator	labor rates)	
H ₂ Buffer Storage		
We used a bottom-up approach to determine mar LCH_2/LC storage tank.	nufactured cost for the dehydrogenation reactor and	
 We costed the microchannel heat exchangers for materials and 1.5X bottom-up process costs for tu 	the HEX burner, $\rm H_2$ cooler and recuperator based on direct ube-fin heat exchangers.	
We costed the H ₂ buffer storage tank based on di	rect materials.	
	. Heat Transfer Fluid (HTF) pump, Liquid Carrier (LCH ₂) H_2 tank heater, piping, sensors, controls, valves and sted for high-volume production.	
(TIAX	MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost - Sept 2010 -v3.ppt 3(

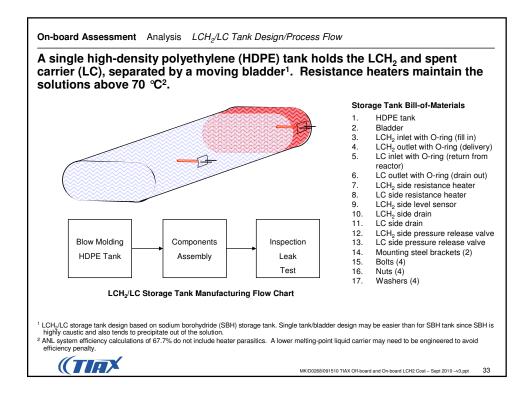
On-board Assessment	Analysis	Design Assumptions (1)

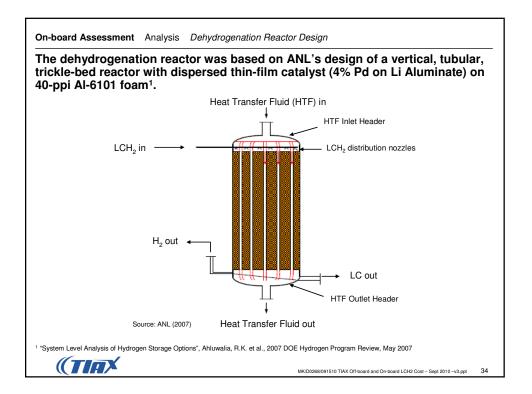
We based our media and storage tank assumptions and specifications on discussions with APCI and ANL and their 2007 Merit Review presentations^{1,2}.

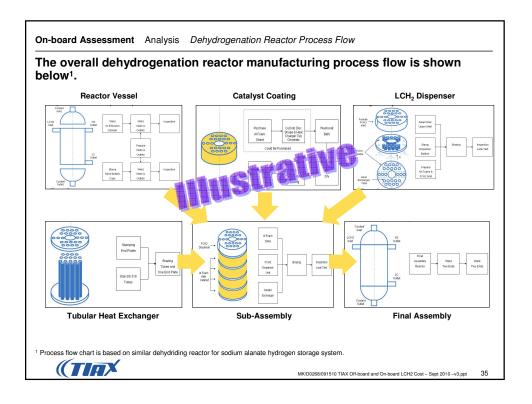
System Element	Design Parameter	Value	Basis/Comment
Media/System	Media/Material	N-ethylcarbazole	ANL ² , APCI ¹
	Material H ₂ storage capacity	5.8 wt%	ANL ² , APCI ¹
	Storage system efficiency	67.7%	ANL ² ; includes H ₂ utilized to fire burner only (does not include 95% reactor conversion efficiency)
	LCH ₂ solution density	1200 kg/m ³	ANL ²
	LC solution density	950 kg/m ³	ANL ²
	Tank material of construction	HDPE	ANL ²
LCH2/LC Storage Tank	% excess tank volume	10%	Over fuel volume, to account for sloshing
	Usable H ₂ capacity	5.6 kg	Design basis; note: ANL ² analysis done for 6.4 kg usable $\rm H_2$
	Stored H ₂ capacity	8.7 kg	Calculated based on 95% conversion efficiency and 67.7% storage efficiency; note: ANL ² analysis done for 10 kg stored $\rm H_2$
	Bladder/separator?	Yes	Single tank design; needed to separate LCH_2 from LC
	Temperature	70 °C	Needed to prevent solidification

¹ "Hydrogen Storage by Reversible Hydrogenation of Liquid-Phase Hydrogen Carriers", Cooper, A.and Pez, G., 2007 DOE Hydrogen Program Review ² "System Level Analysis of Hydrogen Storage Options", Ahluwalia, R.K. et al., 2007 DOE Hydrogen Program Review, May 2007

On-board Assessment Analysis Design Assumptions (2)


The dehydrogenation reactor design was also based on information from APCI and ANL.


System Element	Design Parameter	Value	Basis/Comment
	Туре	Vertical, tubular trickle bed reactor	ANL ²
	Heat of dehydrogenation	+51 kJ/mol H ₂	APCI ¹ , ANL ² ; =25 MJ/kg H ₂
	Catalyst	Pd on Li Aluminate	Dispersed wash-coat (thin-film) catalyst, 50 micror
	Catalyst concentration	4% wt. of substrate	363 mm active length
	Catalyst substrate	40-ppi Al-6101 foam	92% porosity, 224 kg/m ³ bulk density
Reactor Liquid H Velocity Peak op Max. op HX tube	Conversion efficiency	95%	ANL ²
	Liquid Hourly Space Velocity (LHSV)	20 h ⁻¹	ANL ² ; H ₂ volumetric flow rate/liter reactor volume
	Peak operating temp.	240-270 °C	ANL ²
	Max. operating pressure	8 bar (116 psi)	ANL ²
	HX tube material	Al-2219-T81	ANL ² ; 40 tubes (11.1 mm OD, 0.8 mm wall, 400 mm length)
	Reactor vessel material	Al-2219-T81	ANL ² ; 182 mm OD, 0.8 mm wall, 460 mm total length, 2.25 safety factor


* "System Level Analysis of Hydrogen Storage Options", Ahluwalia, R.K. et al., 2007 DOE Hydrogen Program Review, May 2007

Other component design assumptions are presented in the Appendix.

On-board Assessment Analysis Raw Material Prices

We used Year 2008 prices for the key raw materials, which are listed below. Subsequently, we deflated all material prices by 9.27% to Year 2005 USD.

System Element	Raw Material	Price (2005\$)	Basis/Comment
Media	N-ethylcarbazole	\$6.35/gal	APCI; \$2-12/gal range (2008\$), deflated to 2005\$; consistent with TIAX off-board LCH ₂ storage system assessment
LCH ₂ /LC Storage Tank	HDPE	\$1.6/kg	Plastics Technology, May 2008, pg. 95, deflated to 2005\$
	Pd catalyst	\$12.7/g (\$395/tr.oz.)	www.metalprices.com; June, 2008, deflated to 2005\$
	Li Aluminate	Li Aluminate \$43.8/kg Sigma-Aldrich ¹ , deflated to 2	
Dehydrogenation Reactor	AI-6101	\$9.6/kg	Bulk price from Alcoa (2009), deflated to 2005\$
Reactor	AI-2219-T81	\$12.7/kg	Assumed 30% higher price than AL-6101, based on spread in price between Al-6101 and Al-2219 from 2008
	HTF (XCelTherm® 600)	\$7.26/gal	RadCo Industries, Inc., June 2008, deflated to 2005\$
HEX Burner	Inconel 600	\$15.0/kg	www.metalprices.com; June, 2008, deflated to 2005\$
H ₂ Cooler, Recuperator	SS316	\$7.26/kg	www.metalprices.com; June, 2008, 1-year avg, deflated to 2005\$.

¹ https://www.sigmaaldrich.com/catalog/search/ProductDetail?ProdNo=336637&Brand=ALDRICH

(TIAX

MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost - Sept 2010 -v3.ppt

36

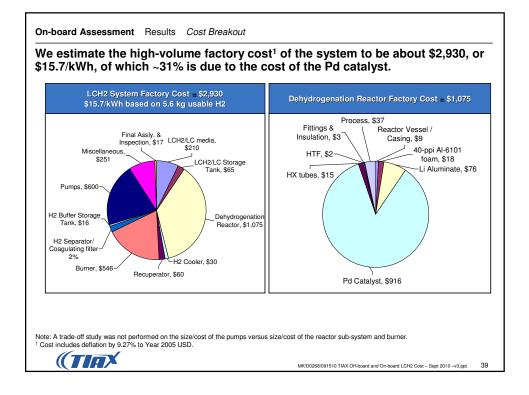
On-board Assessment Analysis Purchased Components

We based the cost of purchased components on vendor quotes/catalog prices, using our judgment to adjust for high-volume production.

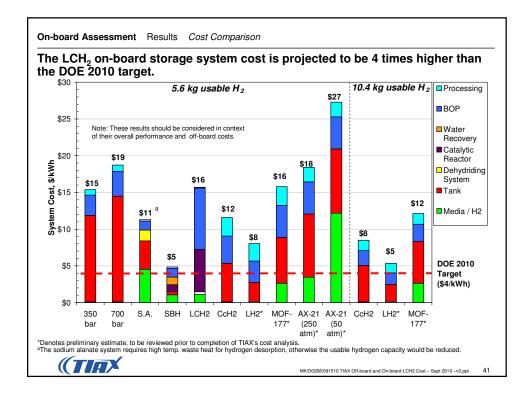
Purchased Component	Weight (kg)	Volume (L)	Cost (\$)	Basis/Comment
HTF Pump	40	30	\$400	0.4X McMaster-Carr catalog price; ANL ¹ : XCelTherm® 600, 458 L/min, 320 °C, ΔP=1 bar
LCH ₂ Pump	20	10	\$200	0.4X McMaster-Carr catalog price; ANL ¹ : LCH ₂ , 2.65 L/min, 70 °C, Δ P=8 bar
H ₂ /air Non-catalytic Burner	2	1	\$400	0.4X McMaster-Carr catalog price \$1,000 for NG burner, 180,000 Btu/h; ANL ¹ : 82 kW, 5% excess O ₂ , Inconel
H ₂ Blower	2.0	5	\$18	0.5X Modine OEM \$37 not including tooling and capital cost markup 1.2
Coagulating filter	1.8	0.8	\$43	0.4X McMaster-Carr retail price of \$105
LCH ₂ Tank Heater	0.1	0.0	\$4	
Piping & Fittings	7	3	\$72	Bottom-up costing using Boothroyd-
Sensors & Controls	0.0	0.0	\$30	Dewhurst DFMA® software, with 1.5X markup for component supplier
Valves & Connectors	3	2	\$105	overhead and profit
Pressure Regulators	1	1	\$44	7

¹ "System Level Analysis of Hydrogen Storage Options", Ahluwalia, R.K. et al., 2007 DOE Hydrogen Program Review, May 2007 Note: A complete bill of materials is included in the appendix

We performed bottom-up costing (i.e., raw materials, process flow charts) on all other components.



MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost – Sept 2010 –v3.ppt 37

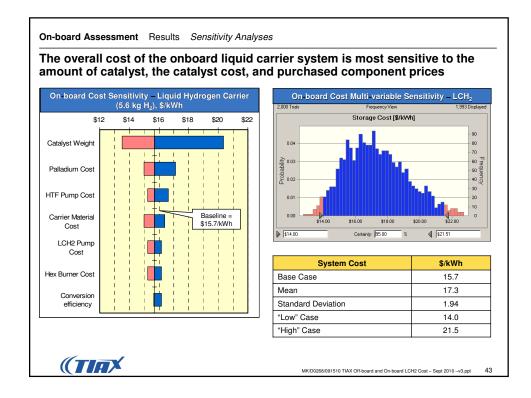

On-board Assessment Results Material vs.Process Cost

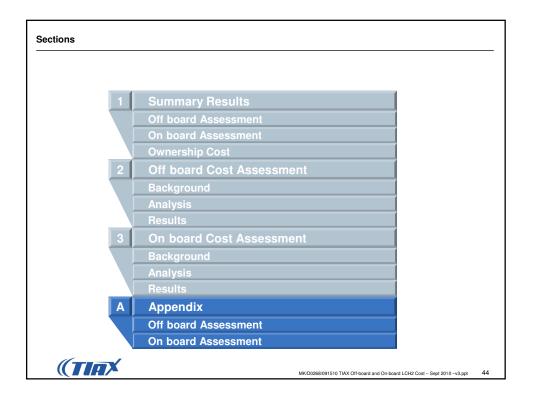
Processing cost makes up just ~5% of the total system cost due to the high production volume assumption and large fraction of purchased components.

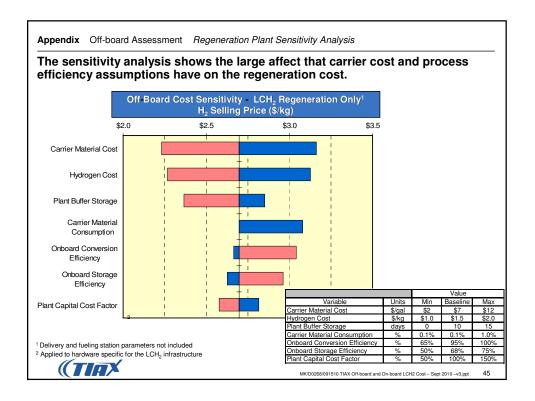
LCH ₂ /LC Media ¹	210	(purchased)	0%
LCH ₂ /LC Storage Tank	55	10	15.4%
Dehydrogenation Reactor	1,038	37	3.4%
- Pd Catalyst	916	(purchased)	0%
- Li Aluminate	76	(purchased)	0%
- Al-6101 foam substrate	18	19	51.8%
- Reactor Vessel (AI-2219-T81)	9	2	18.1%
- HX tubes (Al-2219-T81)	15	16	51.7%
- Other (HTF, insulation, fittings)	5	(purchased)	0%
H ₂ Cooler	6	24	80%
Recuperator	36	24	40%
Burner	510	36	6.6%
- Microchannel HX	92	36	28.2%
 H₂/air non-catalytic burner 	400	(purchased)	0%
- H ₂ blower	18	(purchased)	0%
H ₂ Separator/Coagulating filter	52	7	11.8%
H ₂ Buffer Storage Tank	16	0.5	3.1%
Pumps	600	(purchased)	0%
- HTF pump	400	(purchased)	0%
- LCH ₂ pump	200	(purchased)	0%
Miscellaneous	251	(purchased)	0%
Final Assembly & Inspection	0	17	100.0%
Total Factory Cost	2,774	156	5.3%

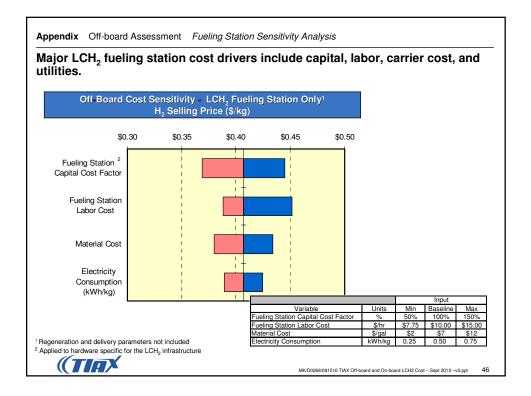
onbo	AX's assumptions and calcul pard cost estimate.	t of the LCH2/LC N			
di pr ♦ In	creased the cost of the coagulator filt scount from low volume catalog list p evious cost was based on an 80% dis creased the price of aluminum from \$ -2219	rice (consistent wit scount.	h other BOP comp	oonents); the	
	2010 Updated Results Compared to 2009 AMR Results	2009 AMR	2010 Update	% Change	
		2009 AMR 15.4	2010 Update 15.7	% Change +2%	

On-board Assessment Results Sensitivity Parameters

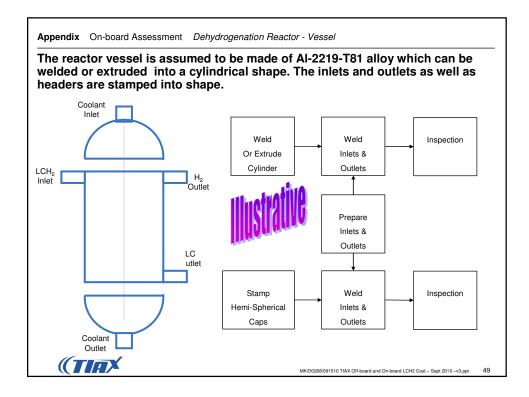

To account for the uncertainty in the onboard cost projections, we developed "low" and "high" cost estimates as inputs to the sensitivity analysis.

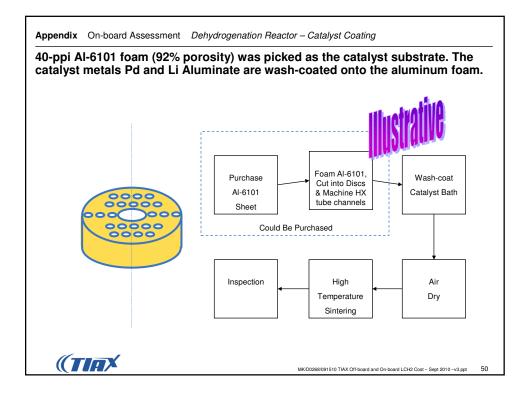

Kou Sanaitivity Parametera			On bo	oard Cost Sensitivity – LCH ₂
Key Sensitivity Parameters	Baseline	Min	Max	Basis/Comment
Conversion Efficiency	95%	65%	100%	◆Baseline from ANL 2007 DOE AMR ¹ , min from APCI 2008 DOE AMR ²
Catalyst Weight (kg)	1.8	0.9	3.6	Min and Max are one half and two times the baseline
Palladium Cost (2008\$/troy oz.)	436	360	580	 Baseline from metalprices.com annual average Min and Max estimates from min and max LME values in 2008
HTF Pump Cost	\$400	\$300	\$600	◆Baseline from catalog prices discounted by ~60%
LCH ₂ Media Cost (2008\$ per gal)	\$7	\$2	\$12	◆Discussion with APCI
LCH ₂ Pump Cost	\$200	\$100	\$300	Baseline from catalog prices discounted by ~60%
Aluminum T6101 Cost (\$/kg)	9.6	4.8	19.2	Min and Max are one half and two times the baseline
Aluminum T6101 Cost (\$/kg)	12.7	6.4	25.4	Min and Max are one half and two times the baseline
HEX Burner Cost	\$400	\$300	\$500	 Baseline from catalog prices for natural gas burners discounted by ~60%.

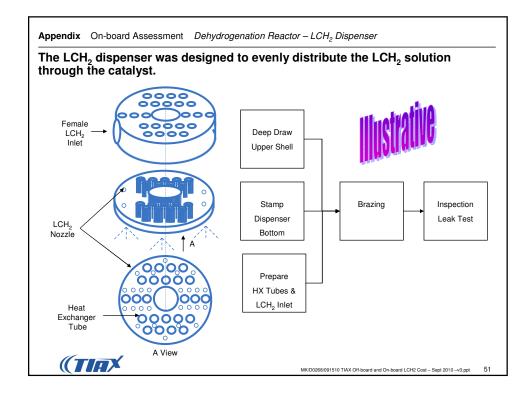

¹ "System Level Analysis of Hydrogen Storage Options", Ahluwalia, R.K. et al., 2007 DOE Hydrogen Program Review, May 2007
 ² "Reversible Liquid Carriers for an Integrated Production, Storage and Delivery of Hydrogen", Toseland, B. and Pez, G., 2008 DOE H₂ Program Review

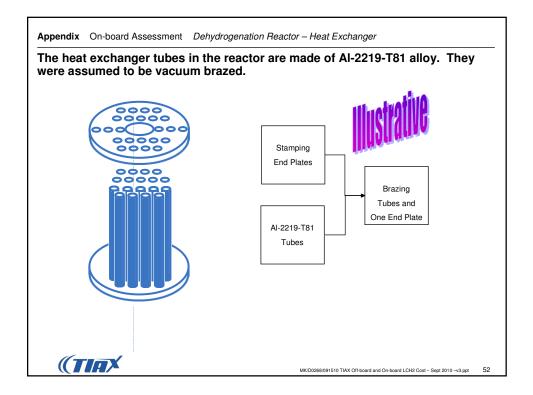

(TIAX

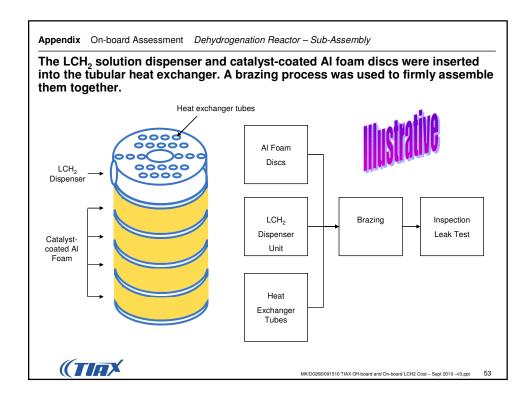
MK/D0268/091510 TIAX OH-board and On-board LCH2 Cost - Sept 2010 -v3.ppt 42



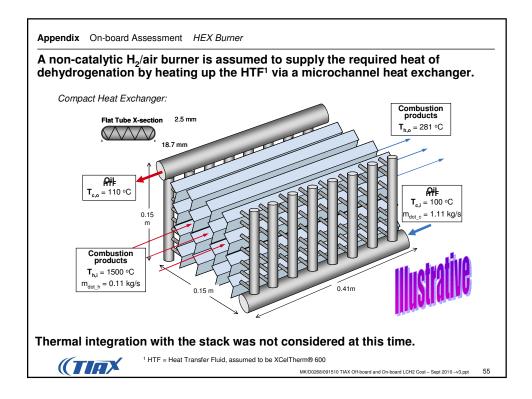

	DE Merit Review pr		nent specifications on APCI ¹ and				
System Element	Design Parameter	Value	Basis/Comment				
	Material	Al-2219-T81	ANL ² ; (249 mm OD, 0.5 mm wall, 744 mm total length, 2.25 safety factor)				
H ₂ Buffer Storage Tank	Peak Operating Temp	80 °C	ANL ²				
	Max. Operating Pressure	8 bar (116 psi)	ANL ²				
	Tank capacity	20 g H ₂	ANL ²				
	Burner type	H ₂ /air (non-catalytic)					
	Burner fuel	32.3% by weight of stored H ₂	ANL ² ; 5% excess O ₂ , 1100 °C combustion products' exit temperature				
HEX Burner	Burner firing rate	82 kW (280,000 Btu/h)					
	НХ Туре	Counterflow Microchannel	ANL ² ; HTF=XCelTherm® 600, 100 °C approach temp., 310 microchannels (14.1 mm x 0.9 mm x				
	HX Material	Inconel 600	363 mm)				
H₂ Cooler	НХ Туре	Counterflow Microchannel	ANL ² ; T _{outlet} = 80 ℃, 90 microchannels (10.6 mm x 1.4 mm x 165 mm)				
-	HX Material	SS316	1.4 mm x 165 mm)				
Recuperator	НХ Туре	Counterflow Microchannel	ANL ² ; T _{LCH2} = T _R -10 °C, 610 microchannels (10.1 mm x 0.6 mm x 263 mm)				
	HX Material	SS316					


Appendix On-board Assessment Design Assumptions (4)


We based our system assumptions and component specifications on APCI¹ and ANL² 2007 DOE Merit Review presentations.


System Element	Design Parameter	Value	Basis
	Working fluid	XCelTherm® 600	
	Operating Temp	320 °C	
HTF Pump	Pressure Head	1 bar (15 psi)	ANL ²
	Density	850 kg/m ³	
	Flow rate	458 Liter/min (6.5 kg/s)	
	Working fluid	LCH ₂	
LCH ₂ Pump	Operating Temp	70 °C	
	Pressure Head	8 bar (116 psi)	ANL ²
	Density	1200 kg/m ³	
	Flow rate	2.65 Liter/min (0.053 kg/s)	
		Phase Hydrogen Carriers", Cooper Iuwalia, R.K. et al., 2007 DOE Hydr	, A.and Pez., G, 2007 DOE Hydrogen Program Review ogen Program Review, May 2007



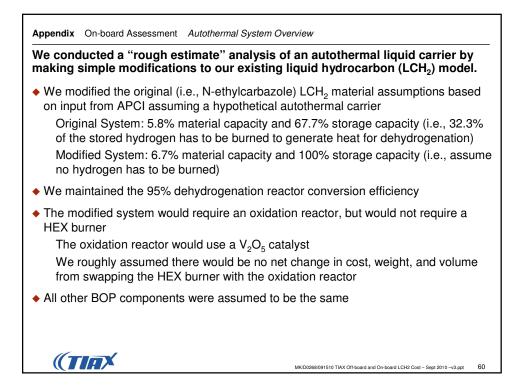


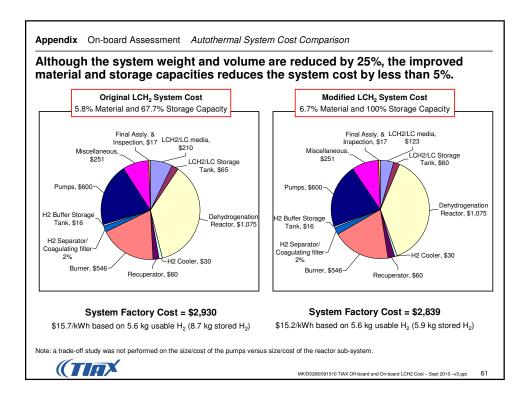
Appendix On-board Assessment Weight, Volume, Cost Breakout

On-board system detailed breakout - Weight (kg), Volume (L), Cost¹ (\$)

Component	System Weight (kg)	System Volume (L)	System Cost (\$)
LCH2/LC media	150.1	125.1	\$209.9
LCH2/LC Storage Tank	10.4	46.1	\$64.6
Dehydrogenation Reactor	7.4	19.1	\$1,075.2
H2 Cooler	0.8	0.3	\$30.3
Recuperator	5.0	1.6	\$60.1
Burner	10.1	8.0	\$546.4
H2 Separator/Coagulating filter	3.1	0.8	\$59.6
H2 Buffer Storage Tank	1.3	36.3	\$15.9
Pumps	60.0	40.0	\$600.0
Miscellaneous	7.9	5.5	\$250.8
Final Assly. & Inspection	0.0	0.0	\$17.0
Total	256	283	\$2,930

¹ Cost includes deflation by 9.27% to Year 2005 USD.


u System DOM.	Storage	Tank & Dehy	ydrogenat	ion Reac	tor
Description	Qty	Material	Volume (cm3)	Weight (kg)	Cost (USD)
LCH2/LC Storage Tank	1		171.189	160.54	\$264.26
LCH2/LC Fuel Tank	1		171,189	0.00	\$0.00
Fuel Tank Body	1	HDPE	7,056	6.70	\$11.13
Solution Outlet Fitting	1	SS316	9	0.07	\$1.00
Solution Inlet Fitting	1	SS316	9	0.07	\$1.00
Solution Drain Fitting	1	SS316	9	0.07	\$1.00
Drain Plug	1	SS316	5	0.05	\$0.50
Mounting Bolt	6	Misc	5	0.05	\$0.10
Nut	6	Misc	5	0.05	\$0.05
Washer	6	Misc	5	0.05	\$0.05
Level Transmitter	1	Misc	5	0.05	\$5.00
Temperature Transmitter	1	Misc	5	0.05	\$4.00
LCH2 Solution	1	LCH2	125,103	150.12	\$209.91
Heater	2	Misc	10	0.10	\$8.00
Separator Assembly	1	SS316	388	3.10	\$22.52
Dehydrogenation Reactor	1		19.116	7.36	\$1.038.31
Reactor Vessel / Casing	1	AI-2219-T81 alloy	12.008	0.71	\$9.03
40-ppi Al-6101 foam	1	Al-6101 alloy	8.209	1.84	\$17.65
Li Aluminate	1	Li Aluminate	665	1.73	\$75.72
Pd Catalyst	1	Pd	6	0.07	\$915.77
LCH2 Solution Inlet Fitting	1	SS316	9	0.30	\$1.00
LC Solution Outlet Fitting	1	SS316	9	0.30	\$1.00
HX tubes	1	AI-2219-T81 alloy	414	1.18	\$14.94
HTF		XCELTHERM 600	1.134	0.96	\$2.17
Insulation		GF	7.108	0.27	\$1.01


MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost - Sept 2010 -v3.ppt

56

oard System BOM: Su	pport \$	Systems			
Description	Qty	Material	Volume (cm3)	Weight (kg)	Cost (USD)
H2 Cooler	1	Misc	326	0.85	\$6.13
Microchannel HX	1	SS316	326	0.85	\$6.13
Recuperator	1	SS316	1,592	4.96	\$36.00
Microchannel HX	1	SS316	1,592	4.96	\$36.00
Burner	1	Misc	7,953	10.12	\$510.26
Microchannel HX	1	Inconel	2,153	6.12	\$91.76
H2/air non-catalytic 82 kW burner	1	Misc	1,000	2.00	\$400.00
H2 Blower	1	Misc	4,800	2.00	\$18.50
H2 Separator/Coagulating filter			784	3.08	\$52.40
Coagulation filter	1	Misc	783	1.80	\$43.09
Separator	1	SS316	1	1.28	\$9.31
Flow Components	1	Misc	1,826	2.45	\$59.50
3-Way Valve	1	Misc	262	0.45	\$40.00
Piping System	1	SS316	1,564	0.00	\$15.00
Fitting	10	SS316	0	2.00	\$4.50
H2 Buffer Storage Tank	1	Misc	36,271	1.33	\$15.87
Buffer Storage Tank Body	1	Al-2219-T81 alloy	36,229	0.96	\$12.22
Outlet Fitting	1	SS316	9	0.07	\$1.00
Inlet Fitting	1	SS316	9	0.07	\$1.00
Drain Fitting	1	SS316	9	0.07	\$1.00
Drain Plug	1	SS316	5	0.05	\$0.50
Mounting Bolt	6	Misc	5	0.05	\$0.10
Nut	6	Misc	5	0.05	\$0.05

Description	Qty	Material	Volume (cm3)	Weight (kg)	Cost (USD)
Pumps	1		40.000	60.00	\$600.00
HTF presure head: 1 bar	1		30,000	40.00	\$400.00
LCH2 pressure head: 8 bar	1		10,000	20.00	\$200.00
Fill port	1	Misc	524	0.91	\$28.00
Inlet Quick Connector	1	Misc	262	0.45	\$14.00
Outlet Quick Connector	1	Misc	262	0.45	\$14.00
			202	0.10	¢11.00
Valves	1	Misc	1,311	2.50	\$77.00
Solenoid Valve	1	Misc	262	0.50	\$25.00
Ball Valve	1	Misc	262	0.50	\$13.00
Check Valve	1	Misc	262	0.50	\$14.00
Pressure Relief Device	1	Misc	262	0.50	\$5.00
Pressure Relief Valve	1	Misc	262	0.50	\$20.00
Sensors	1	Misc			\$30.00
Temperature Transducer	1	Misc			\$10.00
Pressure Transducer	1	Misc			\$20.00
Dine 9 Etting	1	Misc	1.042	4.00	\$12.25
Pipe & Fitting	1	SS316	1,042 1.042	1.00 0.00	\$12.25
Piping Fitting	5	SS316 SS316	1,042	1.00	\$10.00
					+====
Primary Pressure Regulator	1		787	1	\$44.00

Appendix On-board Assessment Autothermal System Conclusions

Our "rough estimate" for an autothermal liquid carrier shows a 25% reduction in system weight and volume is possible, but cost savings are minimal.

 With improved material (5.8% → 6.7%) and storage (67.7% → 100%) capacities, the modified on-board system shows significant weight and volume reductions

However, additional material and BOP improvements would be required to meet the 2010 DOE weight and volume targets

Modified LCH ₂ System Versus DOE Targets	Weight (kg)	Volume (L)
LCH ₂ Material Only	88	73
-including tank	96	99
2010 DOE target for 5.6 kg usable H2	124	200
Net available for BOP	28	101
Current estimate for BOP	95	112

 Improvements to the material and storage capacities do little to decrease the system cost because the dehydrogenation reactor and BOP account for over 90% of the system cost The dehydrogenation reactor accounts for ~40% of the system cost (Pd catalyst accounts for

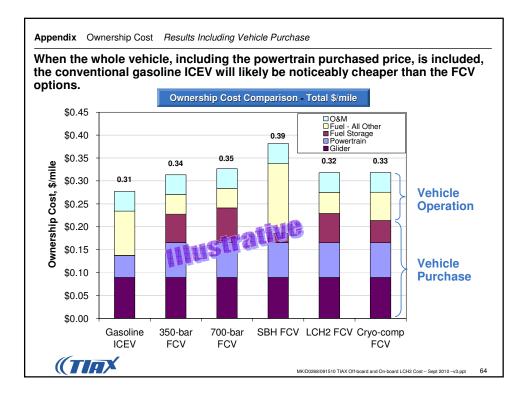
85% of the reactor cost)

The system pumps and HEX burner/oxidation reactor account for another ${\sim}40\%$ of the system cost

MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost - Sept 2010 -v3.ppt

62

Appendix Ownership Cost Vehicle Cost Assumptions


Vehicle cost estimates assume that all FCV components, except the fuel storage system, meet DOE's cost goals for 2015 and beyond¹.

Vehicle Cost Assumptions ¹ (\$/vehicle)	Gasoline ICEV	cH ₂ FCV ²	SBH FCV	LCH ₂ FCV	Basis/Comment
Glider	\$7,148	\$7,148	\$7,148	\$7,148	Group of components (e.g., body, chassis, suspension) that will not undergo radical change
IC Engine/Fuel Cell Subsystem	\$2,107	\$2,549	\$2,549	\$2,549	Includes engine cooling radiator
Transmission, Traction Motor, PE	\$1,085	\$1,264	\$1,264	\$1,264	Includes electronics cooling radiator
Exhaust, Accessories	\$500	\$500	\$500	\$500	Assumes exhaust and accessories are \$250 each
Energy Storage	\$110	\$1,755	\$1,755	\$1,755	Includes battery hardware, acc battery and energy storage cooling radiator
Fuel Storage	\$51	\$5,548	\$1,632	\$5,026	H ₂ storage cost from On-board Cost Assessment
Manufacturing/ Assembly Markup	\$5,500	\$7,045	\$7,045	\$7,045	OEM manufacturing cost is marked up by a factor of 1.5 and a dealer mark-up of 1.16
Dealer Markup	\$2,690	\$3,445	\$3,445	\$3,445	
Total Retail Price	\$19,191	\$29,222	\$25,328	\$28,703	

¹ Source: DOE, "Effects of a Transition to a Hydrogen Economy on Employment in the United States", Report to Congress, July 2008. All costs, except for the FCV Fuel Storage costs, are based on estimates for the Mid-sized Passenger Car case. See report for details. ² cH₂ FCV option assumes 6,250 psi dispensing and 5,000 psi on-board storage system.

MK/D0268/091510 TIAX Off-board and On-board LCH2 Cost - Sept 2010 -v3.ppt 63

