Startup of PEFC Stacks From Sub-Freezing Temperatures

R. K. Ahluwalia and X. Wang DOE Workshop on Fuel Cell Operations at Sub-Freezing Temperatures Phoenix, AZ

February 1-2, 2005

The submitted manuscript has been created by the University of Chicago as Operator of Argonne National Laboratory ("Argonne") under Contract No. W-31-109-ENG-38 with the U.S. Department of Energy. The U.S. Government retains for itself, and others acting on its behalf, a paid-up, nonexclusive, irrevocable worldwide license in said article to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the Government.

Argonne National Laboratory

A U.S. Department of Energy Office of Science Laboratory Operated by The University of Chicago

Start-up Time and Energy Consumption

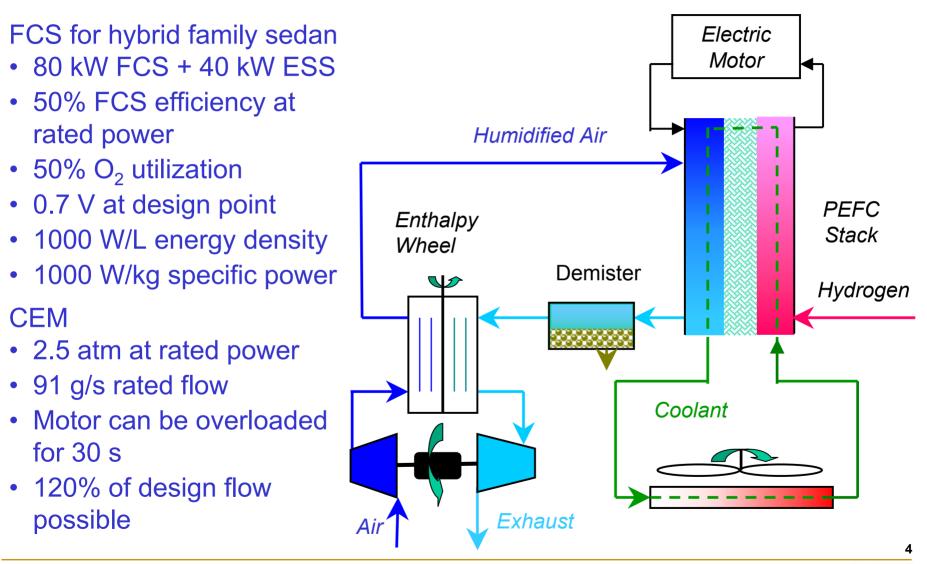
Start-up Time: Time to place the FCS in a state where it is capable of producing rated power on demand.

- Achieving rated efficiency at rated power not a criterion
- Time may depend on the start-up event

Start-up Energy Consumption: Fuel energy consumed by the FCS in excess of the energy consumed if the FCS was at normal operating temperatures.

- Includes energy consumed when the vehicle is parked
- If energy stored in battery is used during or prior to the start-up event it must be translated into fuel energy.

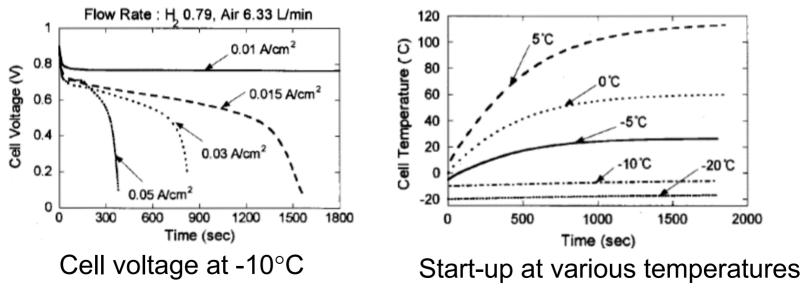
- 1. Self (IR) heating of stacks
- 2. Internal oxidation of hydrogen on MEA catalyst
- 3. External combustion of hydrogen
- 4. Insulated stack with electrical heating
- 5. Insulated coolant tank with electrical heating



Office of Science

U.S. Department

Pressurized FCS with Enthalpy Wheel Humidifier



Self-Heating From Sub-Freezing Temperatures

- Japanese study* on single cell, 104-cm² MEA, 1-2 atm
- At -3 to -25°C, cell performance decreases at higher current density and pressure and lower temperature.
- Self heating is feasible above -5°C (Threshold T₁): Balance between heat generated by cell reaction, heat convected with flowing gases and loss of ECSA due to ice formation

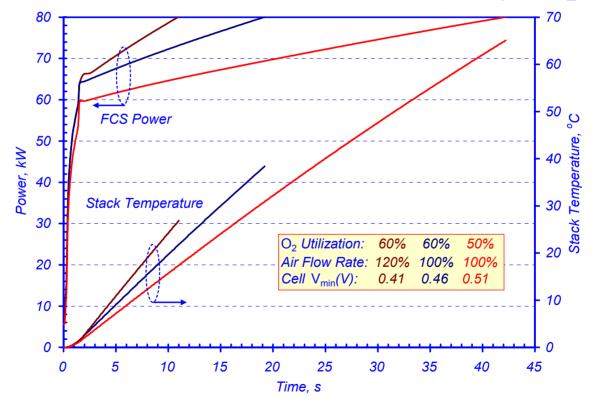
* Y. Hishinuma, T. Chikahisa, F. Kagami and T. Ogawa, "The Design and Performance of a PEFC at a Temperature Below Freezing", JSME International Journal, 47, 2004, p235~241.

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Self-Heating Above Freezing Temperatures

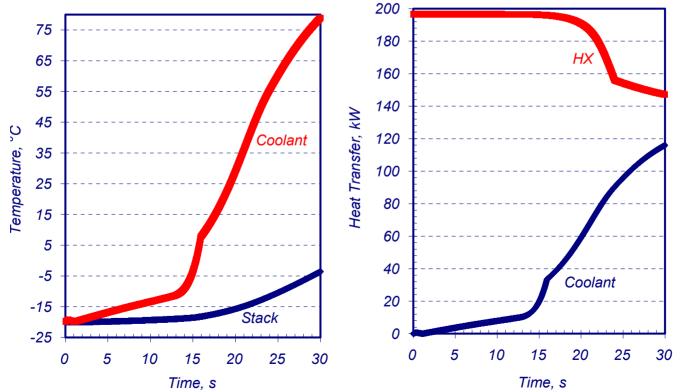
GCtool simulations to determine the stack temperature (T_2) at which the FCS can produce rated power at higher than design-point O_2 utilization

Stack	O ₂	Air Flow	Cell	FCS
Temperature	Utilization	Rate	Voltage	Efficiency
80°C	50%	100%	0.70 V	50%
40°C	60%	100%	0.55 V	40%
28°C	60%	120%	0.48 V	35%



Start-Up Time For Self-Heating Above Threshold Temperature (0°C)

- ~2 s for CEM to reach 97.5 krpm, ~3 s for 110 krpm.
- Minimum start-up time: 40 s at 50% O₂ utilization & 100% air flow;
 20 s at 60% O₂ utilization; 10 s at 120% air flow
- Fuel energy consumed in heating stack from T_1 to T_2 : 1-1.3 MJ



Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Stack Heating to Threshold Temperature External H₂ Burner

- Need a compact HX, probably of microchannel design, 10 kg estimated mass
- 1.4 MJ required to heat the stack from -20°C to 0°C.
- Stack heat up is slow and ineffective (5.6 MJ of fuel energy)

Hydrogen, Fuel Cells, & Infrastructure Technologies Program

Stack Heating to Threshold Temperature Internal Oxidation of H₂ on MEA Catalyst

- Maximum H_2 concentration in the cathode air ~0.5-3.5%
- Maximum O_2 concentration in the anode $H_2 \sim 1-7\%$
- Peak turbine inlet temperature 250°C

Cathode		Anode		Stack
H ₂	Adiabatic	O ₂	Adiabatic	Heat-up
Volume %	Temperature	Volume %	Temperature	Time
0.5	20°C			335 s
2.0	145°C			84 s
3.5	270°C			46 s
3.5	270°C	2	315°C	44 s
3.5	270°C	5	810°C	40 s
3.5	270°C	7	1130°C	35 s

Stack Heating to Threshold Temperature Insulated Stack with Electrical Heating

- 1" insulation, 0.05 W/m.K
- Stack cools from 80°C to 0°C in 13-25 h
- A 40-kW hybrid battery maintains stack at 0°C for 6-24 h

	Cool-Down		
Temperature	Time to 0°C	at 0°C	
-10°C	25 h	20 W	
-20°C	19 h	40 W	
-40°C	13 h	80 W	

- Periodically operate FCS for ~4 min at 25% power
 - ✓ Recharge the battery (480 W.h)
 - ✓ Excess power (60%) to electrical heaters
 - ✓ Heat the stack from 0 to 80°C
 - ✓ 5.3 MJ/day fuel energy consumption at -20°C ambient

Stack Heating to Threshold Temperature Insulated Coolant Tank with Electrical Heating

- 1" insulation, k = 0.05 W/m.K
- A 5-gallon tank at 40°C heats stack to 0°C in 5-25 s
- Tank cools from 70°C to 40°C in 12-18 h
- A 40-kW hybrid battery maintains tank at 40°C for 11-18 h

Ambient	Time for Tank	Heat Loss from	Time to Heat
Temperature	to Cool to 40°C	Tank at 40°C	Stack to 0°C
-10°C	18 h	27 W	5 s
-20°C	16 h	32 W	10 s
-40°C	12 h	43 W	25 s

- Periodically operate FCS for ~6 min at 25% power
 - ✓ Recharge the battery (480 W.h)
 - ✓ Excess power (75%) to reheat the tank to 70°C
 - ✓ 9.1 MJ/day fuel energy consumption at -20°C ambient

Office of Science

U.S. Department

Modifying stack model to simulate transients

- Formation of ice
- Effect of ice on reaction kinetics

Need data to validate the stack model at sub-freezing temperatures

- Membrane conductivity
- Electrocatalyst activity
- Experimental polarization curves for single cells

12

