

power to change the world*

BALLARD®

Requirements & Status for Volume Fuel Cell Manufacturing

DOE Hydrogen Program, Washington, DC July 13-14, 2005

Customer Requirements: Commercial Plant Study

Volume: 250,000 fuel stacks per year

- Cost: \$30/kw net

- Commercial Volume Manufacturing
 - -Material Utilization: >85%
 - Controlled Environments (Humidity, temperature, dust)
 - -Environmentally safe direct and indirect materials
 - Hydrogen safety
 - Make or Buy Decisions on non/proprietary unit cell components
 - Integrated strategic supply chain
 - Design for Manufacturing, Assembly, and Service

- Quality Control & Assurance
 - Accelerated tests and process parameters correlated to key product requirements (QFD)
 - -From 100% Inspection to SQC Sampling to SPC
 - –Measurement System Variability: <10% of signal</p>
 - Error Proofing
 - Six Sigma capability on high cost and key performance related materials and processes (DMAIC & DFSS)
 - Configuration Control & Batch Traceability

- Commercial Plant Must Also Support
 - Customer Acceptance Testing
 - -Certificate of Compliance: Additional testing not req'd at OEM
 - Customer Service: Repairs, Failure Analysis, On-site support

Promotes a fuller understanding... Who Casts the Biggest Shadow? Influence 70% 20% 5% 5% Overhead 30% Labor Material 15% 50% **Product Cost** Design 5% Adapted from Ford Motor Co. 2000 Boothroyd Dewhurst, Inc.

- Automotive Customer
 - -APQP
 - Certificate of Compliance
 - Capable and Controlled Processes
 - Process and Designs Verified and Validated to meet Automotive Application Requirements
 - -PPAP (part Submission Warrant)
 - Configuration and Document Control
 - Traceability
 - -ISO/TS16949 Certification

Design

- DFMA incorporates materials, features & tolerances for ease of supply, high volume manufacture, assembly, and service
- Increase consideration for manufacturing yield and material utilization
- Eliminate components, parts and process steps
- Standardize core components across products
- Standardize non-core components across supplier-base

- Supply Chain
 - Form supplier relationships & partnerships to ensure manufacture of fuel cells in volume, resulting in economies of scale to drive down the material costs
 - Involve suppliers early in design
 - DFMA requirements form Manufacturing into Material and Part Specifications

- Additional Design Requirements
 - Multi-component ink mixtures and dispersions
 - 3-D unit cell macro and micro-structures
 - Adhesive and cohesive layers
 - Selective surface treatments
 - Heat Treatments
 - Reproducible tolerances on finished parts and assemblies
 - Finished components and stacks sealed for both Liquids and Gases
 - Electrical Isolation and ESD Protection
 - Enclosure and Packaging to Automotive OEM Requirements

Manufacturing Technology Status

MEA

- Design for Manufacturing features incorporated into Design
- -Semi-automated Discrete/Continuous
 - Ink mixing and delivery
 - Gas Diffusion Layer
 - Hydrophobic/Hydrophillic Treatments
 - Electrode Fabrication
 - MEA assembly
- Semi-automated Sealing

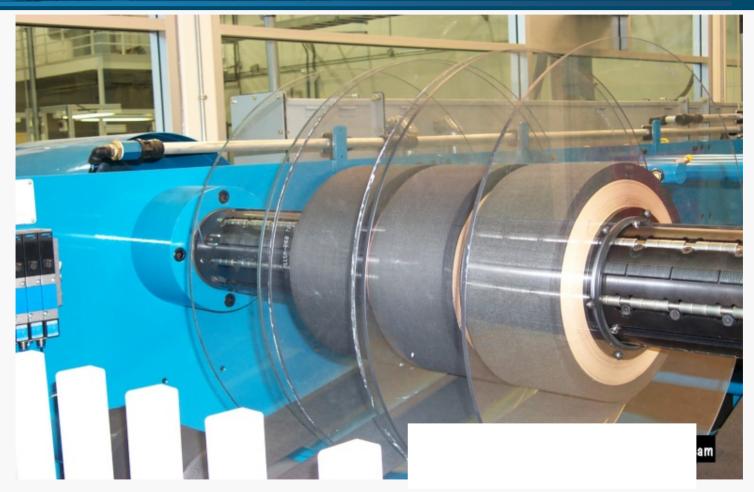
GDL - Continuous Fabrication & Heat Treatment

GDL Fabrication

GDE - Continuous Processing

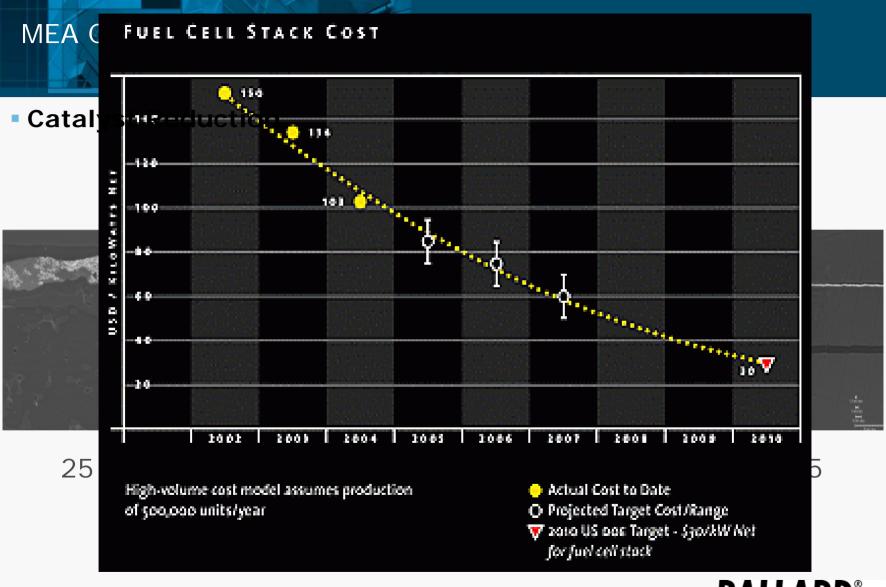
reating

Catalyst Coatings (GDE)

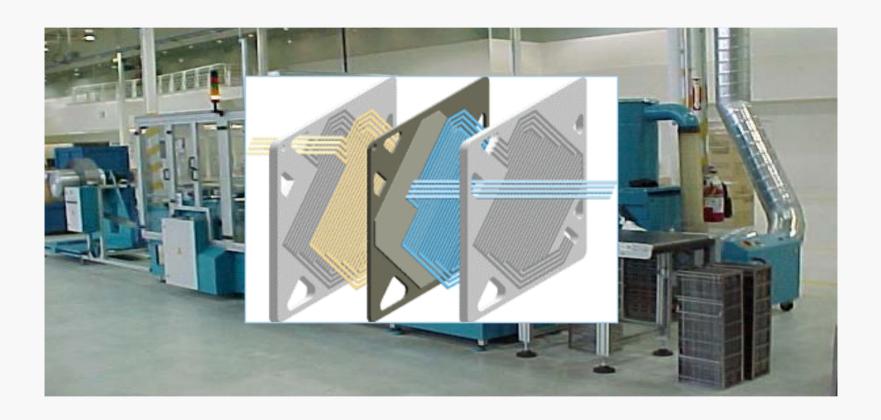


MEA – Continuous Assembly

MEA -Flexible and Continuous Sizing



MEA - Semi-automated Sealing



Manufacturing Technology Status

- Bi-Polar Separator Plate
 - Design for Manufacturing Features incorporated into Design
 - Discrete/Continuous
 - Flowfield Embossing
 - Semi-automated
 - Plate Sealing
 - Plate Assembly

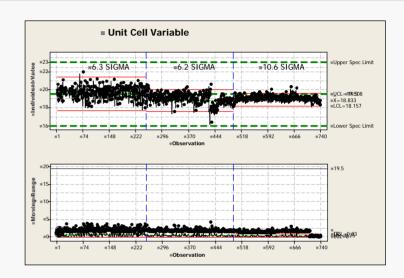
Continuous Plate Fabrication

Semi-Automated Plate Sealing

Manufacturing Technology Status

- Stack & System Assembly
 - Design for Assembly features
 - Integrated Unit Cell Sealing
 - Manual/Semi-automated
 - stack assembly
 - electrical continuity and leak testing
 - compression and fastening
 - Manual Packaging

Semi-Automated Stack Assembly



Manufacturing Technology Status

• Quality Control & Assurance

- Unit Cell Processes under SPC
- Non-contact/destructive gauging
- Key processes Six-Sigma capable
- 100% stack (accelerated) testing to customer requirements
- 100% stack leak testing
- 100% material batch and configuration traceability
- 100% process variable data collection
- Key process variables correlated to key product requirements
- Integrated Plant Data System (iPDS) and document control system
- Automotive Supplier Certified (ISO/TS16949)

Semi-Automated 'End-of Line' Quality Testing

Barriers To Be Overcome ...

- OEM Requirements Cascade
- Customer Application and Acceptance Testing
- Hydrogen Leak Test Capability
- 4. Unit Cell microstructure manufacturing
- Design for Six Sigma
- 6. Automotive qualified suppliers

The Future is closer than we think

75 Cars and 35 Buses in operation today

