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BASF Fuel Cell – 
Formed from legacy companies with history of catalyst, 
gas diffusion electrodes, and membrane innovation

Customer application lab in Japan opens April 2008

BASF merges fuel cell activities and forms BASF Fuel Cell

BASF acquires PEMEAS and Engelhard

E-TEK becomes division of PEMEAS

Celanese and investors form PEMEAS 

Celanese Ventures introduces Celtec-P MEA to market

Celanese Ventures MEA production plant goes on stream

BASF identifies fuel cell as growth area and launches fuel cell project

Celanese takes over fuel cell project after demerger from Hoechst

BASF develops and manufactures reformer catalysts

Engelhard develops and markets catalysts for fuel cell and reformer

Hoechst develops first high temperature MEA

E-TEK formed to commercialize catalysts and gas diffusion technology1990
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* 120 –

 

180 °C

Membrane:

Based on polybenzimidazole (PBI) and 
phosphoric acid

Electrodes:

Catalysts and layer structure tailored for 
high temperature conditions (typically 160 – 
180°C) and PBI-PA membrane

Applications:

Stationary power supply, CHP 

Backup power 

Auxiliary power units 

micro-portable

Celtec®-P: MEAs for High Temperature* 
PEMFC
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Celtec®-MEAs 
Enabling Competitive Fuel Cells

Celtec-P MEA for high temperature 
PEMFC
In the market since 2004

Advantages for customers
Better robustness
Simplified system
Higher overall efficiency
A hybrid of the best advantages of a 
phosphoric acid system with the 
manufacturing simplicity of a MEA
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CE5

Customer Partnerships to Develop 
Markets from 10W to 10kW

Portable Electronics:

Residential:

Back-up and Premium Power:
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Celtec®-P MEAs – BASF Fuel Cell Core 
MEA Technology

MEA Operation 
T=120°C to 180°C

High Tolerance to impurities

Especially suitable for small stationary systems, 
APUs, small mobile systems for power electronics

PP
A 

C
on

c.

85%

115% Monomers Polymer, Film casting

Sol

Gel

Membrane

+ H2 O
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Acid evaporation from Celtec MEAs 
Hydrogen bonding with PBI may help retain acid

Fuji Electric PAFC data
I. Okae, S. Kato, A. Seya, and 
T. Kamoshita, ‘Study of the Phosphoric 
Acid Management in PAFCs’, 
The Chemical Society of Japan 
67th Spring Meeting, 148 (1990).

Celtec P 1000: 50cm², 
i=0.35A/cm² 100kPaa ,H2 -Air 1.5-2 

PAFC data: 100cm², 100kPa
i=0.3 A/cm², H2 -Air 1.25-2
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2.5x difference

BASF believes this basis may allow either simpler 
system or longer lifetimes based on acid retention

D.C. Steel, B. Benicewicz, L. Xiao, T.J. Schmidt in
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Membrane – current areas of focus 

Celtec-P is a gel type membrane with low solid content

We continue to seek out approaches to improve the mechanical 
properties, e.g. creep or pressure sensitivity 

Benefits of improved mechanical strength 

Low creep resistance of membrane tightens tolerances for stack 
manufacturing, i.e., dimensional tolerances of BBP and gaskets 
become very tight, forcing greater compliance from 
manufacturers

Broadening of  these tolerances gives a more robust MEA

Opens up new approaches for higher speed roll-to-product 
processing for MEA fabrication
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Cathode kinetics in HT-MEAs
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* LT data: Neyerlin et al., 
JECS 153(10) A1955 (2006)

Celtec P cathode 
(1mg/cm², 160°C, 100kPaa ,
dry H2 /O2 at s=1.2/9.5) 

Low temperature 
Nafion type cathode 
(0.2mg/cm², 60°C, 101kPaa 
H2 -O2 , 100%RH) 

5x at 0.8V

Overall comparison at 0.8V: 5x better kinetics in Nafion type LT PEFC compared to HT 
PEF

What is the reason of the difference? 

D.C. Steel, B. Benicewicz, L. Xiao, T.J. Schmidt in
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Challenges for electrocatalysis at the 
PBI/H3 PO4 interface

Activation energy and reaction orders at the PBI/H3PO4 interface in high 
temperature PEFCs are identical than those at the Nafion interface in low 
temperature PEFCs

Identical reaction mechanism

Major difference is observed in the exchange current density: Roughly 2.5 
orders of magnitude lower values at the PBI/H3PO4 interface in high 
temperature PEFCs compared to Nafion interface in low temperature 
PEFCs (Normalized to 101.325 kPa and 80°C)

Strong adsorption of phosphate ions on Pt leads to reduction of surface 
sites for O2 adsorption 

Oxygen solubility in phosphoric acid
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Approaches to improve kinetics in 
HT-cathodes
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Increase Solubility of O2
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Approaches to improve kinetics in 
HT-cathodes

Razaq et al., JECS 136, 385 (1989)

85% PA

85% PA+PFSI

85% PA

85% PA+PFSI

Fuel Cell

RDE

PFSI = perfluorosulfonimide



10.11.2009 13

Catalyst Activity Areas of Focus

Development of alloys more resistant to phosphate anion absorption

Tools and techniques for alloy development far more advanced 
than what existed 20 years ago (for example XAFS, XANES, etc)

Synthetic techniques to create more sophisticated alloys have 
also progressed

Pursuit of routes to increasing oxygen solubility

Significant wealth of new materials relevant to oxygen solubility 
have been developed
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Cathode Stability: Why are improvements 
necessary?
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Start-Stop operation triggers degradation due to cathode 
potential excursions to 1.3V or above

Main effects: increase of mass transport overpotentials
carbon corrosion T.J. Schmidt, J. Baurmeister 

J. Power Sources 176, 428 (2008)
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Comparison HT and LT PEFC

LT PEFC: Pt/Ketjen Black, 80°C, 
66%RH inlet, 0.4mg Pt, 150kPa, 1.3s 

HT PEFC: Pt-Alloy/Vulcan, 160°C 
dry, 0.7mg Pt, 100kPa, 2.5s
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LT data: Yu et al., 
ECST 3(1) 797 (2006)

T.J. Schmidt, in Polymer Electrolyte Fuel Cell Durability, 
F. Büchi, M. Inaba, T.J.Schmidt (Eds.) Springer, 199-222 (2009)

icorr = f(Ac , tres )

Ac (LT) ~ 0.45 Ac (HT)

tres (LT) ~ 0.5 tres (HT)

pH2O drives reaction
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Stabilized carbons: 
Carbon Corrosion Results at 1.2V and 
180°C
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Voltage Cycles/Operation at high cathodic 
potentials under accelerated conditions

Test: 30 minutes cycles between 0.6V and 0.85V probes catalyst stability

Cycle stability significantly improved with new cathode materials
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T.J. Schmidt and J. Baurmeister, ECS Transactions 16(2) 263-270 (2008)
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Start-Stop under accelerated conditions
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Lifetime tests
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(b)

New Cathode Generation: 
Performance is unaffected

Degradation 
160°C: virtually no degradation 
180°C: degradation rate in continuous 

operation improved by factor of 2.4
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stoich 1.5-2, 1bara
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Summary 
R&D Directions in HT-MEA Development

Increase Membrane Mechanical Strength

Simplifies stack building 

Reduces tolerance requirements

Path for next generation manufacturing

Cathode Alloys

Use 21st century tools to design for reduced phosphate anion 
absorption and realize kinetic potential

Exploit new materials with high(er) oxygen solubility

cathode corrosion 

stability improvements have be achieved 

cathode corrosion stability remains focus of development to enter more 
widespread markets
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