

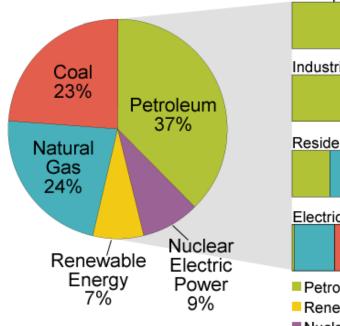
Overview of DOE Hydrogen and Fuel Cell Activities

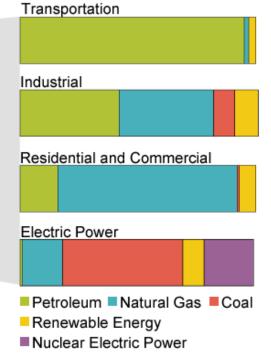
Dr. Sunita Satyapal United States Department of Energy Fuel Cell Technologies Program

Gordon Research Conference: Fuel Cells, Rhode Island August 1, 2010

ENERGY Energy E Renewal

Energy Efficiency & Renewable Energy

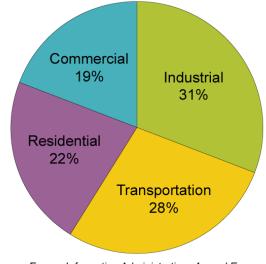

- ✓ Double Renewable
 Energy Capacity by 2012
- Invest \$150 billion over ten years in energy R&D to transition to a clean energy economy
- ✓ Reduce GHG emissions 83% by 2050



U.S. Energy Consumption

ENERGY Energy Efficiency & Renewable Energy

U.S. Primary Energy Consumption by Source and Sector



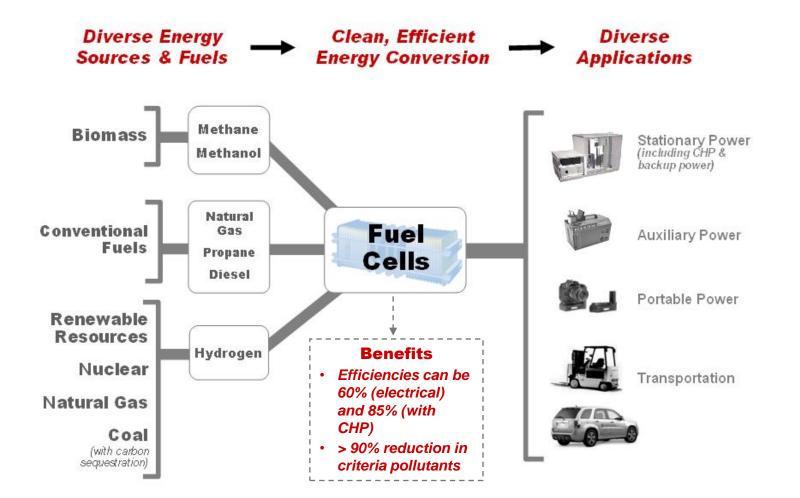
Total U.S. Energy = 99.3 Quadrillion Btu

Source: Energy Information Administration, *Annual Energy Review 2008*, Tables 1.3, 2.1b-2.1f.

Share of Energy Consumed by Major Sectors of the Economy, 2008

Source: Energy Information Administration, *Annual Energy Review 2008*.

Fuel Cells: Addressing Energy Challenges


NERGY Energy Efficiency Renewable Energy

Energy Efficiency and Resource Diversity

 \rightarrow Fuel cells offer a highly efficient way to use diverse fuels and energy sources.

Greenhouse Gas Emissions and Air Pollution:

→ Fuel cells can be powered by emissions-free fuels that are produced from clean, domestic resources.

Fuel Cells — Where are we today?

ENERGY Energy Efficiency 8 Renewable Energy

Fuel Cells for Stationary Power, Auxiliary Power, and Specialty Vehicles

The largest markets for fuel cells today are in stationary power, portable power, auxiliary power units, and forklifts.

~75,000 fuel cells have been shipped worldwide.

~24,000 fuel cells were shipped in 2009 (> 40% increase over 2008).

Fuel cells can be a cost-competitive option for critical-load facilities, backup power, and forklifts.

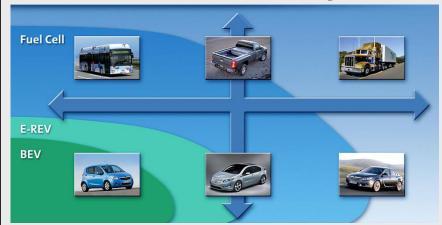
Fuel Cells for Transportation

In the United States:

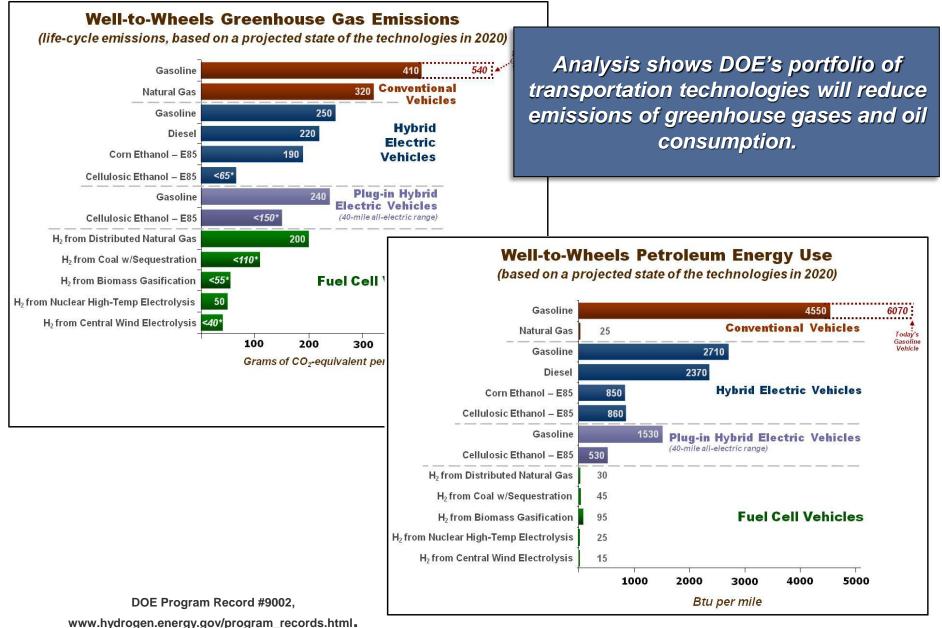
- > 200 fuel cell vehicles
- > 20 fuel cell buses
- ~ 60 fueling stations

Several manufacturers including Toyota, Honda, Hyundai, Daimler, GM, and Proterra (buses) have announced plans to commercialize vehicles by 2015.

Production & Delivery of Hydrogen


In the U.S., there are currently:

~9 million metric tons of H₂ produced annually


> 1200 miles of H₂ pipelines

The Role of Fuel Cells in Transportation

NERGY Energy Efficiency Renewable Energy

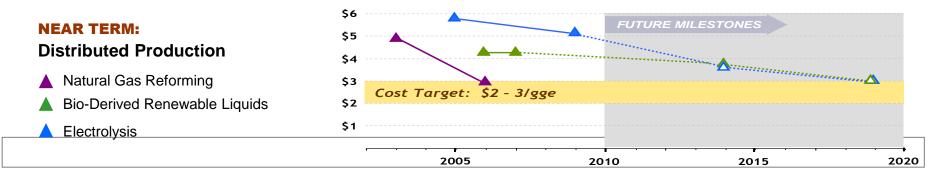
Key Challenges

B

The Program has been addressing the key challenges facing the widespread commercialization of fuel cells.

Fuel Cell Cost & Durability Targets*: Stationary Systems: \$750 per kW, **Technology** 40,000-hr durability Technology **Barriers** Vehicles: \$30 per kW, 5,000-hr durability Validation: Technologies must Hydrogen Cost be demonstrated Target: \$2 – 3 /gge, delivered (revision underway) under real-world conditions. Hydrogen Storage Capacity Target: > 300-mile range for vehicles—without compromising interior space or performance Safety, Codes & Standards Development Economic & Institutional ers **Domestic Manufacturing & Supplier Base**

Public Awareness & Acceptance


Hydrogen Supply & Delivery Infrastructure

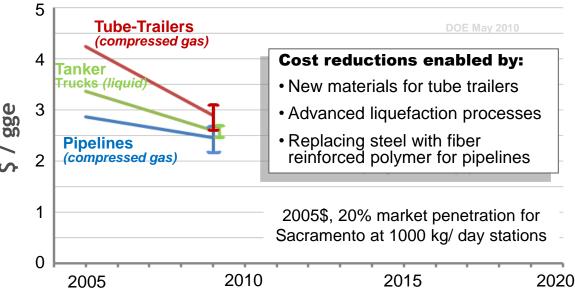
Market Transformation

Assisting the growth of early markets will help to overcome many barriers, including achieving significant cost reductions through economies of scale.

Projected* High-Volume Cost of Hydrogen (Delivered) — Status & Targets

Projected Cost of Delivering Hydrogen

We've reduced the cost of hydrogen delivery* —


~30% reduction in tube trailer costs

>20% reduction in pipeline costs

~15% reduction liquid hydrogen delivery costs

Cost targets under revision


*Projected cost, based on analysis of state-of-the-art technology

H₂ Storage R&D

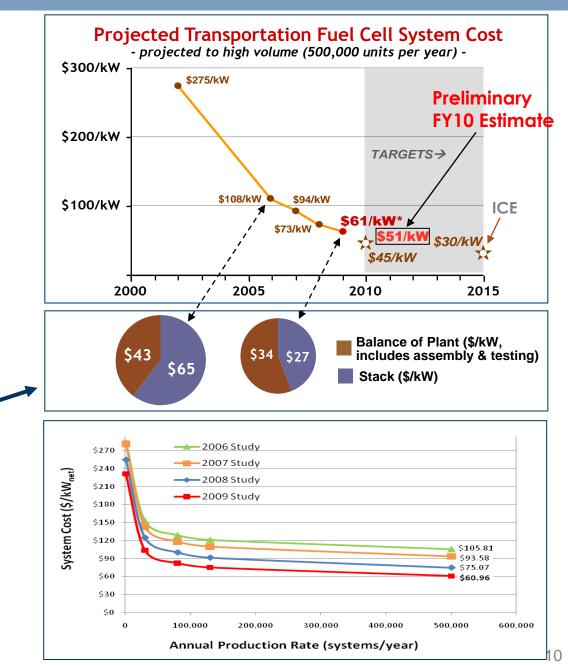
ERGY Energy Efficiency & Renewable Energy

Compressed gas offers a near- term option, but cost is an issue

¹ Cost estimate in 2005 USD. Includes processing costs.

Fuel Cell R&D — Progress: Cost

Energy Efficiency 8 Renewable Energy


Projected high-volume cost of fuel cells has been reduced to \$61/kW (2009)

- More than 15% reduction in the last two years
- More than 75% reduction since 2002
- 2008 cost projection was validated by independent panel**

As stack costs are reduced, balance-of-plant components are responsible for a larger % of costs.

*Based on projection to high-volume manufacturing (500,000 units/year).

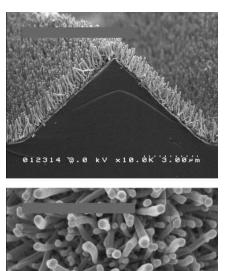
**Panel found \$60 – \$80/kW to be a "valid estimate": <u>http://hydrogendoedev.nrel.gov/peer_reviews.html</u>

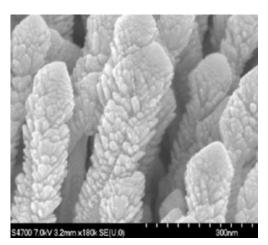
NERG

Fuel Cell R&D — Progress: Cost

ENERGY Energy Efficiency & Renewable Energy

The Program has reduced PGM content and increased power density, resulting in a decrease in system cost.

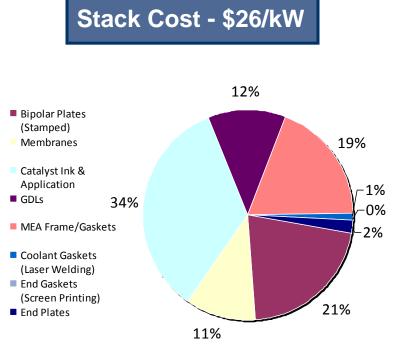

From 2008 to 2009, key cost reductions were made by:


- Reducing platinum group metal content from 0.35 to 0.18 g/kW
- Increasing power density from 715 to 833 mW/cm²
 - → These advances resulted in a \$10/kW cost reduction.

Key improvements enabled by using novel organic crystalline whisker catalyst supports and Pt-alloy whiskerettes.

There are ~ 5 billion whiskers/cm².

Whiskers are ~ 25 X 50 X 1000 nm.


Whiskerettes: 6 nm x 20 nm

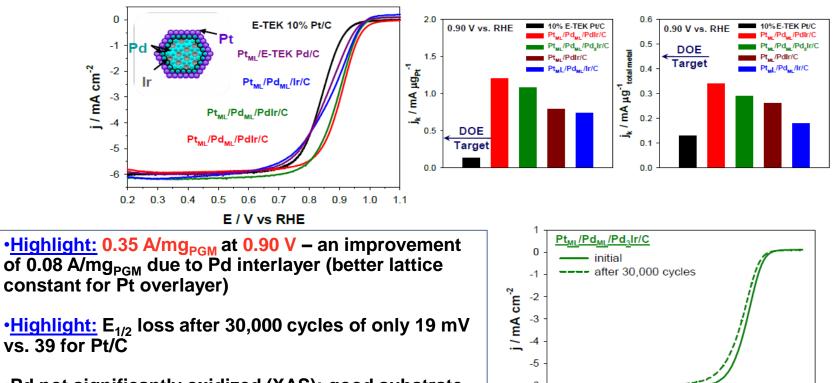
Challenges:

- Platinum (Pt) cost is ~34% of total stack cost
- Catalyst durability needs improvement

Four Strategies for Catalysts & Supports R&D:

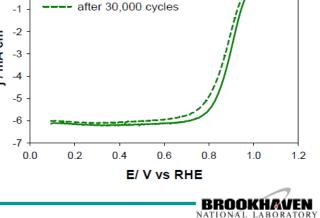
- Lower PGM Content
 - Improved Pt catalyst utilization and durability
- Pt Alloys
 - Pt-based alloys with comparable performance to Pt and cost less
- Novel Support Structures
 - Non-carbon supports and alternative carbon structures
- Non-PGM catalysts
 - Non-precious metal catalysts with improved performance and durability

DTI, 2009 analysis, scaled to high volume production of 500,000 units/yr

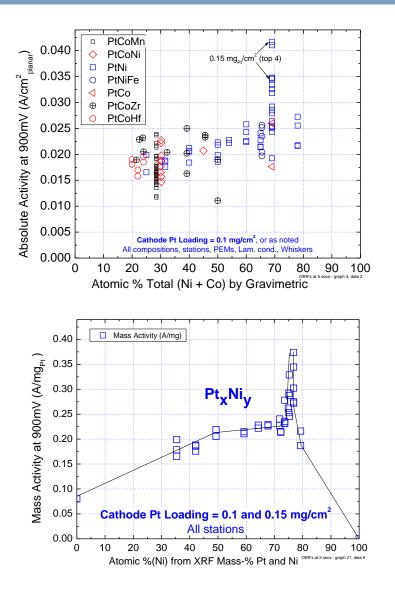

Used \$1100/Troy Ounce for Pt Cost

12

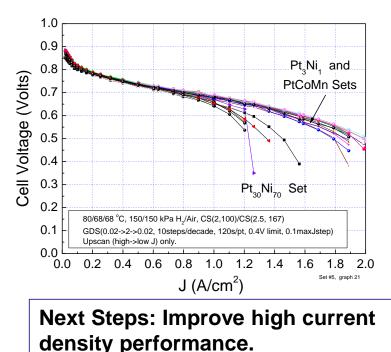
Ultra-low Pt Content Catalysts


NERC

Pd Interlayer Effect on ORR Activity

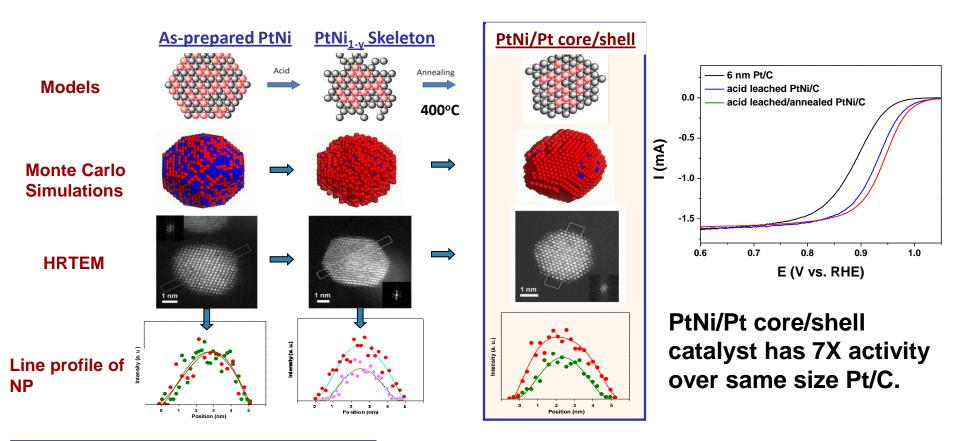

•Pd not significantly oxidized (XAS); good substrate for Pt compared to other metals, e.g. iridium

Los Alamos



Next Steps: Improve activity and durability. In-cell testing.

R. Adzic and P. Zelanay 2009 DOE Hydrogen Program Review

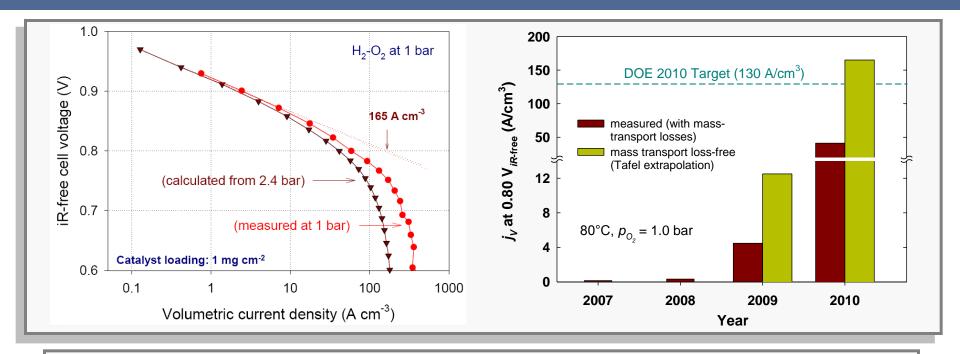

- Screening of multiple new alloys at 3M revealed anomalously high ORR activity for Pt_xNi_y at high Ni content.
- Dramatic and sharp mass activity peak at Pt₃Ni₇ (gravimetric) vs 60at% Ni and 76at% Ni by EMP and XRF respectively.
- Definite gains in kinetic performance but not a practical catalyst yet due to performance limitations above 1 A/cm².

Nano-segregated Cathode Catalysts

ENERGY Energy Efficiency & Renewable Energy

Argonne National Laboratory approach: Materials by design to characterize, synthesize, and test nanosegregated multi-metallic nanoparticles and nanostructed thin metal films

Next Steps: Evaluate in-cell durability, scale-up



PGM-Free Catalysts

Energy Efficiency & Renewable Energy

Ε

Los Alamos National Laboratory Approach: Cyanamide – Fe-C Catalysts

- High ORR activity reached with several non-PGM catalysts by LANL, including cyanamide-Fe-C catalyst (shown).
- Intrinsic catalyst activity is projected to exceed DOE 2010 activity target of 130 A/cm³ at 0.80 V.

Next Steps: Determine active site. Improve activity to PGM catalyst level.

Fuel Cell Technologies — Catalysts Technical Targets vs. Status

ENERG

Electrocatalysts for Transportation	Status ^a	Targets ^b		
Applications	2009	2010	2015	
Platinum group metal (PGM) total content (both electrodes)	0.2 g/kW	0.15 g/kW	0.125 g/kW	
PGM Total Loading	0.15 mg/cm ²	0.15 mg/cm ²	0.125 mg/cm ²	
Loss in catalytic (mass) activity ^c	TBD	<40% loss of initial	<40% loss of initial	
Catalyst support loss ^d	TBD	< 10% mass loss	< 10% mass loss	
Mass activity ^e	0.16 A/mg Pt in MEA >0.44 A/mg Pt new alloy in RDE	0.44 A/mg PGM	0.44 A/mg PGM	
Activity per volume of supported catalyst (non-PGM) ^f	155 A/cm ³	>130 A/cm ³	>300 A/cm ³	

^a single cell status - will require scale-up

^b preliminary targets – approval pending

^c after 30,000 cycles from 0.6 - 1.0 V;

after 400 hours at 1.2 V

^d after 400 hours at 1.2 V

^e baseline @ 900mV_{IR-free}

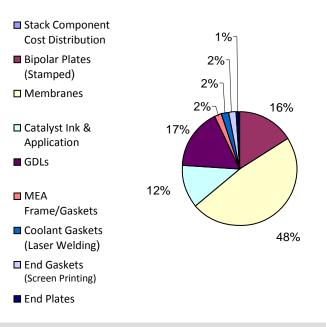
^f baseline @ 800mV_{IR-free}

Update of Multiyear RD&D Plan in process

Challenges:

- Membranes account for 48% of stack cost at low volume
- Limits on operating range
- Chemical and mechanical durability

Membrane R&D:


High-Temperature, Low Humidity Conductivity

Phase segregation (polymer & membrane) Non-aqueous proton conductors Hydrophilic additives

High Conductivity and Durability Across Operating Range with Cycling

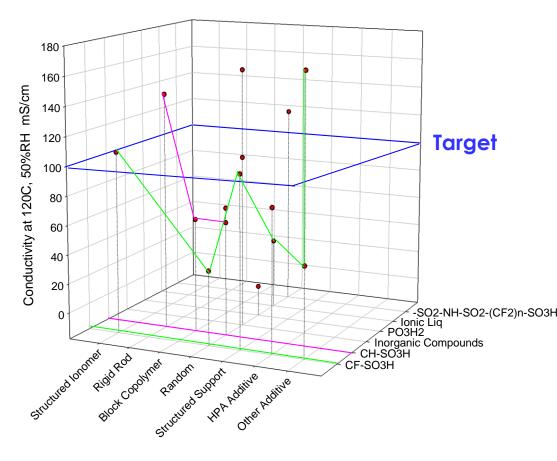
- Mechanical support or membrane reinforcement
- Chemical stabilization (additives, endgroup capping)
- Polymer structure (side chain length, grafting, cross-linking, backbone properties, blends, EW)
- Processing parameters (temperature, solvents)
- **New materials**

Stack Cost - \$137/kW

DTI, 2009 analysis, production of 1,000 units/yr

Used \$453/m² for membrane Cost

Strategies for Hi-T Membrane R&D

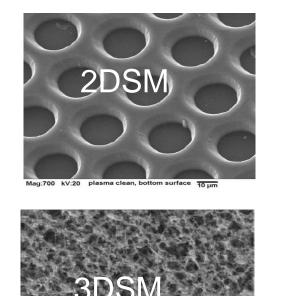

High conductivity at 120 C 50% RH achieved with a variety of approaches

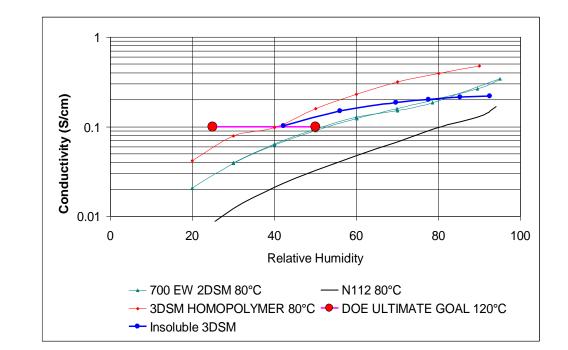
	Morphology	Molecular Approach Additive		ive Appr	oach		Micro/nano engineering approach			
Conductio	on Mechanism	Other Polymer	Block Copolymer	Rigid Rods	ZrPhosphate	НРА	Zeolite	Other	Structured Support	Structured Ionomer
Aqueous								••	Cappon	
	FC-SO3H									
	HC-SO3H									
	Hydrous Metal Oxide	S								
	Perfluoro imide acid									
Potential	Non Aqueous									
	polyPOMs	*								
	Phosphates	**								
	Phosphonic acids									
	Phosphoric acid									
	Heterocyclic bases									
	Ionic liquids									
		≥ 0.1 S/cm	at 120C and	50%RH						
		> 50% of ta	arget							
				NRE 212 < 50% of target						
	*	Measured	in-house an							
	**	Measured	in-house							

Conductivity Results (120 C, 50% RH)

Energy Efficiency & Renewable Energy

Need to go to even lower humidity to simplify fuel cell system designs: Need high conductivity at low RH


Exceeded 0.1 S/cm at 120 C and 50% RH using several conducting groups.


For a given conducting group, morphology can have a large effect on conductivity.

Additives can also have a large effect.

Dimensionally Stabilized Membranes

Giner Electrochemical Systems approach: Engineering polymer matrix provides mechanical properties. Low-EW ionomer provides conductivity

ENERC

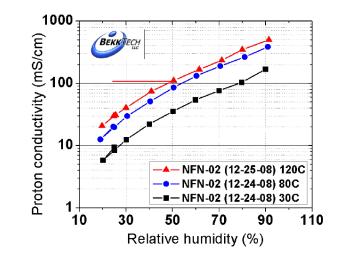
Next Steps: Impregnation of thin porous mats with Iow-EW ionomer. Fabricate large-area films. Improve fuel cell performance.

Nanocapillary Network Membranes

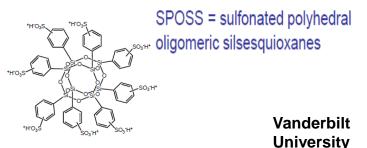
Vanderbilt University approach: Simultaneously electrospin dual nanofiber mat, one fiber is ionomer, the other is an inert polymer. Melt one fiber around other.

Generation 2: Co-spin PFSA and polysulfone nanofibers then process into membrane

Nafion® matrix (~70 vol%), polyphenylsulfone nanofibers

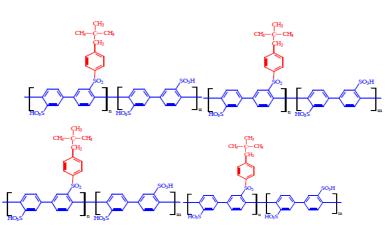

Simultaneous electro-spinning of PFSA and polyphenylsulfone (inert matrix) – eliminates need for impregnation step; also can create PFSA nanofibers with polysulfone matrix from the same dual fiber mat.

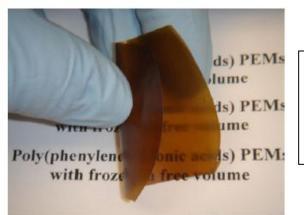
Next Steps: Establish water retention at low RH, improve performance.


P. Pintauro, 2009, 2010 DOE Hydrogen Program Review

<u>Generation 1: PFSA/SPOSS nanofiber mat</u> <u>that is impregnated with inert polymer</u>

HUHKE


Membrane: 60 wt% 3M PFSA (825EW) + 35 wt% SPOSS + 5 wt% poly(acrylic acid) with NAO63 (inert matrix)


Rigid-rod Structure

NERGY Energy Efficiency & Renewable Energy

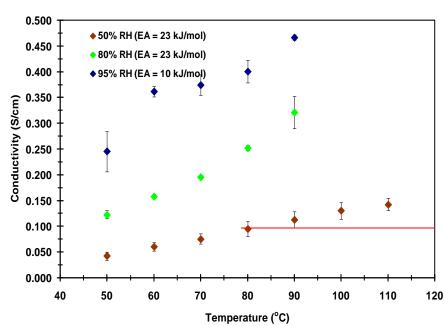
Case Western Reserve University approach: Molecular design with frozen-in free volume retains H₂O at low RH

Neopentyl benzene graft (4%) provides water insoluble film with decent mechanical properties

Demonstrates good conductivity at low RH

Next Steps: Improve mechanical properties. Homopolymers are water soluble. Grafting with non-polar moieties yields insoluble polymers with high conductivity at low RH. Grafting not easily scaled-up.

M. Litt, 2010 DOE Hydrogen Program Review


Case Western Reserve University

HPA-based Polymeric Ionomers

Energy Efficiency & Renewable Energy

Colorado School of Mines approach: Tethered hetero-poly acids for high conductivity in dry conditions

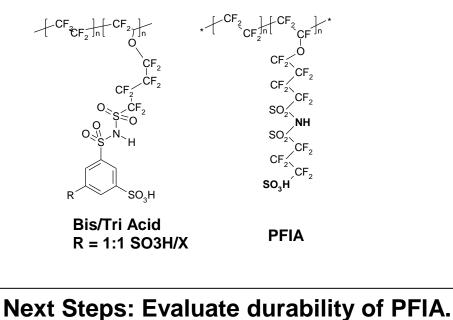
BA

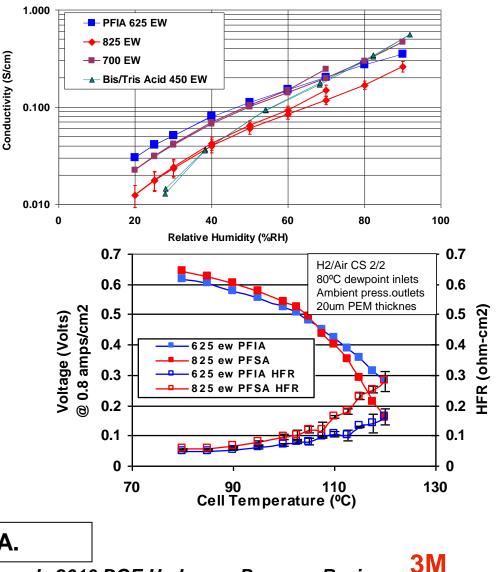
Demonstrated concept of HPA-based polymeric ionomers for high conductivity at low RH.

Next Steps: Improve mechanical properties and oxidative stability. Currently developing chemistry to attach POM to more robust polymers.

HSiW11(vinvl)2 HDDA CHEMSUSCHEM OPPLIEV-MON

HSiW11(vinyl)2/BA/HDDA co-polymer (PolyPOM85V/BA)


> Colorado School of Mines


A. Herring, 2010 DOE Hydrogen Program Review

NERGY Energy Efficien Renewable Energy

3M Approach: Per Fluoro Imide Acid (PFIA) and Sulfonic Acid

- Multi Acid Side-chains (MASC) allow Lower EW while maintaining higher crystallinity
- Starting with an 835 EW polymer, prepared a MASC PFIA ionomer with 625 EW
- Membrane has >100 mS/cm conductivity at 120°C, 50% RH – similar to about 700 EW PFSA

S. Hamrock, 2010 DOE Hydrogen Program Review

DOE membrane targets

		2010	2015	Nafion®
Characteristic	Units	target	target	NRE211
Maximum operating temperature	с	120	120	120
Area specific resistance at:				
Maximum operating temp and water partial pressures from 40 to 80 kPa	ohm cm ²	0.02	0.02	0.186
80 C and water partial pressures from 25 - 45 kPa	ohm cm ²	0.02	0.02	0.03-0.12
30 C and water partial pressures up to 4 kPa	ohm cm ²	0.03	0.03	0.049
-20 C	ohm cm ²	0.2	0.2	0.179
Oxygen crossover	mA/cm ²	2	2	2.7
Hydrogen crossover	mA/cm ²	2	2	2.2
Cost	\$/m ²	20	20	
Durability				
Mechanical	Cycles w/<10 sccm crossover	20,000	20,000	5000
Chemical	H ₂ crossover mA/cm ²	20	20	6

Summary of Key Issues

Catalysts

- Durability of low-PGM and non-PGM catalysts
- Effects of impurities on low-PGM and non-PGM catalysts
- Durability of catalyst supports
- Water management with high-activity catalysts
- Cost of PGM catalysts

Membranes

- Low RH performance
- Durability of new membranes
- Cost at low volumes

• MEAs

- Low-temperature performance
- Water management
- High-current operation

This talk covered only some of the technical challenges and aspects of the DOE portfolio. Other areas being addressed by DOE are:

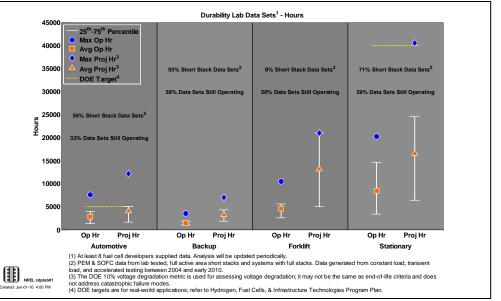
Water management – freeze issues, materials properties

Modeling – durability, transport

Impurity effects – fuel, air, system-generated

Cell hardware – plates, seals

Stationary fuel cells – APUs, CHP


NREL Durability Analysis

Process and analyze fuel cell stack data

Report to data provider and publish Composite Data Products

http://www.nrel.gov/hydrogen/proj_tech_validation.html

<u>Contact Info</u> Jennifer Kurtz jennifer.kurtz@nrel.gov 303-275-4061

Example: CDP Lab#01 - Operation data from lab testing for automotive, backup, material handling, and stationary power applications

ENERGY Energy Efficiency & Renewable Energy

Demonstrations are essential for validating the performance of technologies in integrated systems, under real-world conditions.

RECENT ACCOMPLISHMENTS

Vehicles & Infrastructure

- 144 fuel cell vehicles and 23 hydrogen fueling stations have reported data to the project
- Over 2.5 million miles traveled
- Over 150,000 kg- H₂ produced or dispensed^{*}
- Fuel cell durability- 2,500 hours (nearly 75K miles)
- Fuel cell efficiency 53-59%
- Vehicle Range: ~196 254 miles

Buses

- DOE is evaluating real-world bus fleet data (DOT collaboration)
- H₂ fuel cell buses have 39% to 141% better fuel economy when compared to diesel & CNG buses

Forklifts

 Forklifts at Defense Logistics Agency site have completed more than 10,000 refuelings

Recovery Act

• NREL is collecting data (backup power, forklifts, etc.)

Education, Safety, Codes, & Standards

ENERGY Energy Efficiency Renewable Energy

Safety & Code Officials

 Trained >90 first responders in 3 advanced-level first responder training courses in 18 states and deployed an Intro to Hydrogen web course for code officials

Schools & Universities

 Working with 5 universities to finalize & teach >25 university courses & curriculum modules specializing in H₂ and fuel cells

End Users

 Provided day-long educational seminars to lift truck users, including hands-on forklift demos and real-world deployment data

State & Local Governments

 Conducted >19 workshops and seminars across the country to educate decision-makers on fuel cell deployments

CNG H₂ Fuels Workshop

 Brazil, Canada, China, India and U.S. identified critical gaps and lessons learned from CNG vehicles

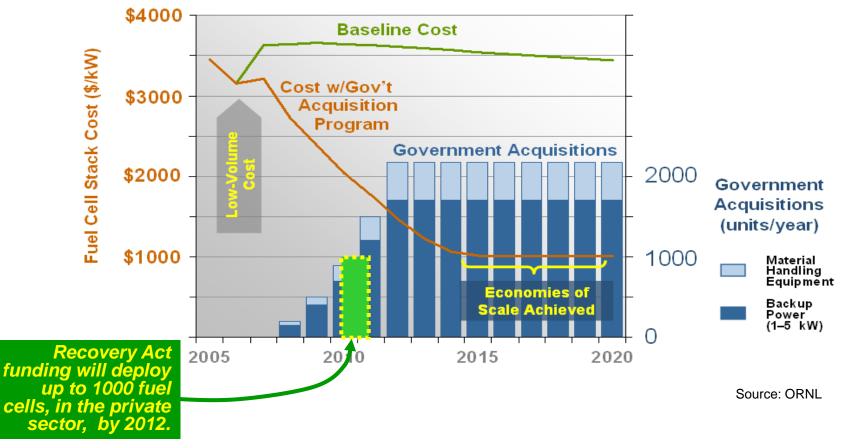
• H₂ Fuel Quality Specification

 Technical Specification published and harmonized with SAE J2719

Separation Distances

 Incorporated Quantitative Risk Assessment for separation distances into codes (NFPA2)

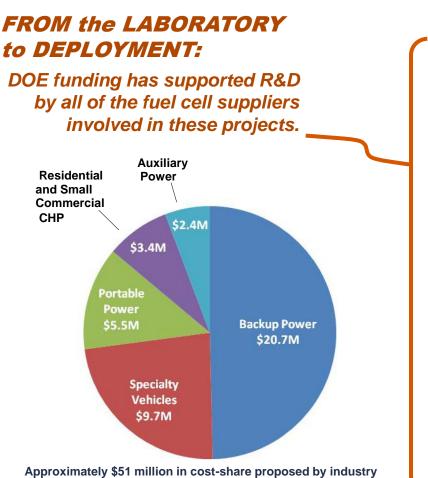
Materials & Components Compatibility


- Completed testing to enable deployment of 100 MPa stationary storage tanks
- Forklift tank lifecycle testing program underway to support the development of CSA HPIT1

Market Transformation

ENERGY Energy Efficiency & Renewable Energy

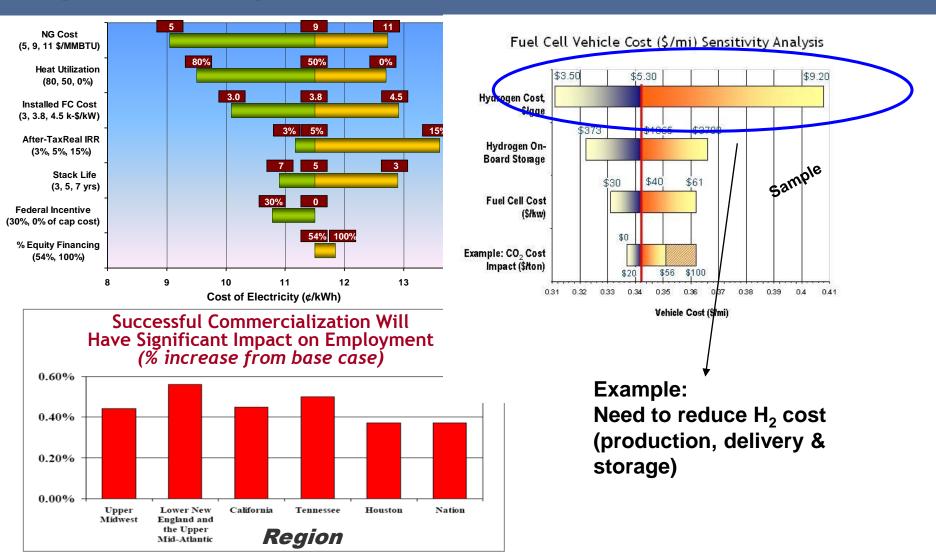
Example: Government acquisitions could significantly reduce the cost of fuel cells through economies of scale, and help to support a growing supplier base.


We are facilitating the adoption of fuel cells across government and industry:

- >100 fuel cells are being deployed, through interagency agreements.
- More interagency agreements under development.

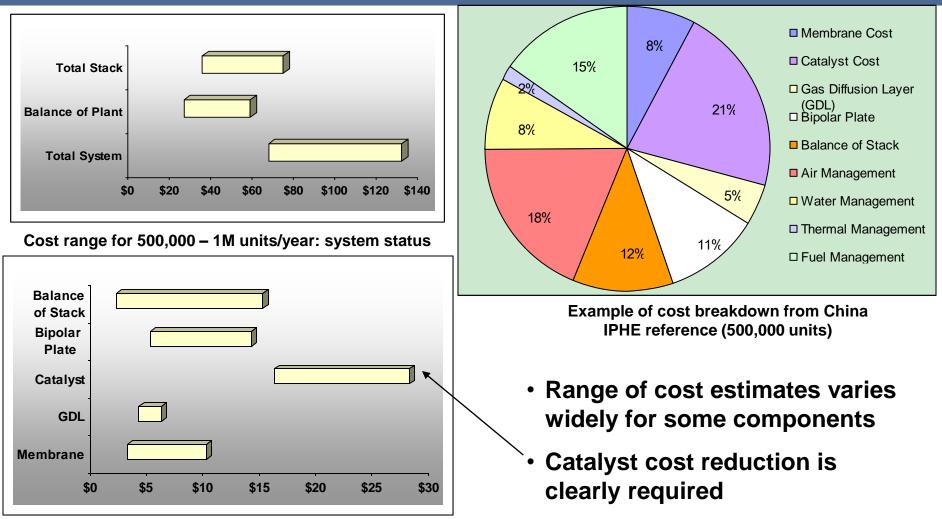
Recovery Act Deployments

DOE announced ~\$42 million from the American Recovery and Reinvestment Act to fund 12 projects to deploy more than 1,000 fuel cells — to help achieve near term impact and create jobs in fuel cell manufacturing, installation, maintenance & support service sectors.



participants-for a total of nearly \$93 million.

COMPANY	AWARD	APPLICATION
Delphi Automotive	\$2.4 M	Auxiliary Power
FedEx Freight East	\$1.3 M	Specialty Vehicle
GENCO	\$6.1 M	Specialty Vehicle
Jadoo Power	\$2.2 M	Backup Power
MTI MicroFuel Cells	\$3.0 M	Portable
Nuvera Fuel Cells	\$1.1 M	Specialty Vehicle
Plug Power, Inc. (1)	\$3.4 M	СНР
Plug Power, Inc. (2)	\$2.7 M	Backup Power
University of North Florida	\$2.5 M	Portable
ReliOn Inc.	\$8.5 M	Backup Power
Sprint Comm.	\$7.3 M	Backup Power
Sysco of Houston	\$1.2 M	Specialty Vehicle


Systems Analysis: Examples

We are assessing the costs and benefits of various technology pathways and conducting a range of analyses including sensitivity analysis, life cycle analysis and job creation analysis.

Stakeholder Cost Analyses

Representatives from the International Partnership for Hydrogen and Fuel Cells in the Economy (IPHE) compiled fuel cell cost estimates for automotive applications to identify potential R&D focus areas

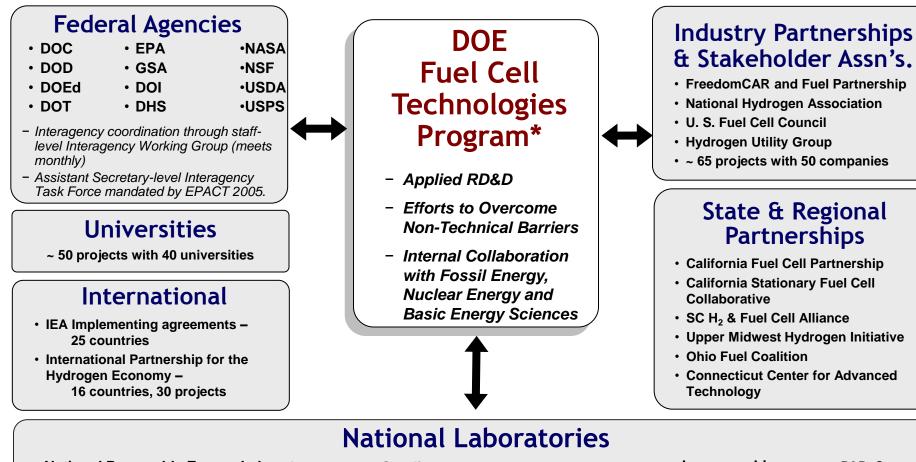
Energy Efficiency & Renewable Energy

ENERG

Workshops & WG Activities

anake

Working Group (WG)	DOE Representative	Leads
High Temp Membrane	Nancy Garland	Jim Fenton (UCF/FSEC) John Kopasz (ANL)
Durability	Donna Ho	Debbie Myers (ANL) Rod Borup (LANL)
Transport Modeling	Dimitrios Papageorgopoulos	Adam Weber (LBNL) R. Mukundan (LANL)
Stationary	Jason Marcinkoski	TBD


Examples of Workshops

Analysis, Tank Safety- China, 9/10 Reversible Fuel Cells- TBD Product/Component Validation- TBD Energy Storage-TBD Other Ideas?

What more can DOE be doing to help accelerate progress and maximize value?

Collaborations

ENERGY

National Renewable Energy Laboratory P&D, S, FC, A, SC&S, TV Argonne A, FC, P&D Los Alamos S, FC, SC&S Sandia P&D, S, SC&S Pacific Northwest SC&S,P&D, S, FC, A Oak Ridge P&D, S, FC, A Lawrence Berkeley FC, A Lawrence Livermore P&D, S Savannah River S, P&D Brookhaven S, FC Idaho P

Other Federal Labs: Jet Propulsion Lab, National Institute of Standards & Technology, National Energy Technology Lab

P&D = Production & Delivery; S = Storage; FC = Fuel Cells; A = Analysis; SC&S = Safety, Codes & Standards; TV = Technology Validation

* Office of Energy Efficiency and Renewable Energy

FY 10 DOE Program Partners — Fuel Cells ENERGY Renewable Energy

Analysis & Testing

ANL
DTI
TIAX
LANL
NIST
ORNL
Battelle

Catalysts & Supports

3M **General Motors** ANL BNL LANL LBNL NREL **PNNL** UTC Power Illinois Institute of Technology University of South Carolina Northeastern University

Cross-cutting

Case Western Reserve University Kettering University Stark State University of Connecticut

Distributed Energy Systems

Acumentrics Intelligent Energy Plug Power IdaTech Versa Power Systems

Durability

UTC Power LANL **Ballard Power Systems** ANL Nuvera Fuel Cells DuPont

Hardware

ANL Treadstone ORNL UTC Power

Impurities

Clemson University LANL NREL University of Hawaii University of Connecticut

Membranes

3M Arizona State University Arkema Case Western Reserve University Colorado School of Mines FuelCell Energy **Giner Electrochemical Systems** LBNL University of Central Florida Vanderbilt University LANL Ion Power

Portable Power

LANL NREL Arkema University of North Florida

Transportation Systems

ANL Cummins Delphi Honeywell W.L. Gore

Water Transport and Freeze

CFD Research Corp. LANL Nuvera Fuel Cells **Rochester Institute of Technology** SNL LBNL **Giner Electrochemical Systems** Plug Power General Motors

Key Program Documents

Fuel Cell Program Plan

ENERGY

ENERGY

Outlines a plan for fuel cell activities in the Department of Energy

- → Replacement for current Hydrogen Posture Plan
- → To be released in 2010

Annual Merit Review Proceedings

Includes downloadable versions of all presentations at the Annual Merit Review

→ Latest edition released June 2010

www.hydrogen.energy.gov/annual_review10_proceedings.html

Annual Merit Review & Peer Evaluation Report

Summarizes the comments of the Peer Review Panel at the Annual Merit Review and Peer Evaluation Meeting

→ Latest edition released October 2009

www.hydrogen.energy.gov/annual_review08_report.html

Annual Progress Report

Summarizes activities and accomplishments within the Program over the preceding year, with reports on individual projects

→ Latest edition published November 2009

www.hydrogen.energy.gov/annual_progress.html

Next Annual Review: May 9 – 13, 2011 Washington, D.C.

Hydrogen Posture Plan

An Integrated Research, Development and Demonstration Plan

Annual Merit Review Proceed

9 DOE Hydrogen Program

Thank you

http://www.eere.energy.gov/hydrogenandfuelcells

Sunita.Satyapal@ee.doe.gov