

Novel Materials for High Efficiency Direct Methanol Fuel Cells

2009 Fuel Cell Projects Kickoff Meeting

Chris Roger and David Mountz October 1, 2009

Announcement Number: DE-PS36-08GO98009 Application Number: Arkema Inc. (1281)

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Project Objectives

- Develop ultra-thin membranes having extremely low methanol crossover, high conductivity, durability, and low cost.
- Develop cathode catalysts that can operate with considerably reduced platinum loading and improved methanol tolerance.
- Produce an MEA combining these two innovations and having a performance of at least 150 mW/cm² at 0.4 V and a cost of less than \$0.80/W for the membrane and cathode catalyst.

Organization

PEM Development and testing MEA diagnostics and durability

Catalyst development MEA production and testing

Dr. Vijay Ramani's Research Group

Cutting-edge characterization of MEAs and development of composite membranes

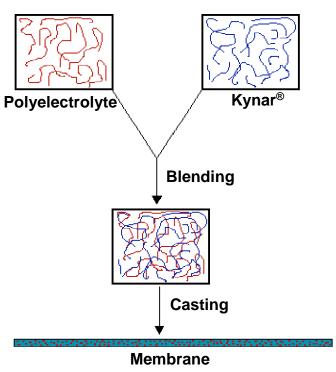
Technical Barriers and Targets

- Barriers Addressed in DOE Fuel Cell Technical Plan:
 - Durability
 - Cost
 - Performance

• Targets

Characteristic	Industry Benchmark	Project Target
Methanol Permeability	1-3-10 ⁻⁶ cm ² /s	5.10 ⁻⁸ cm ² /s
Areal resistance (Ωcm ²), 70 °C	0.120 (Nafion [®] 117)	0.080 (2 mil thick film)
Catalyst Mass Activity (RDE) [†]	22.5 mW/mg Pt	> 100 mW/mg Pt
MEA Cathode Catalyst Loading	4 mg/cm ²	1.5 mg/cm ²
MEA I-V Cell Characteristic	90 mW/cm ² @ 0.4 V	150 mW/cm ² @ 0.4 V
MEA Lifetime	> 3,000 h	5,000 h

 $^{\rm +}$ conditions at 0.45 V & 70 $^{\circ}\text{C}$

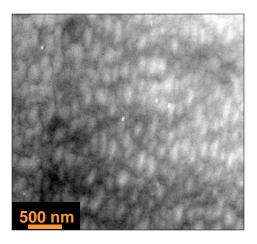

Technical Approach: Membrane Development

• Polymer blend

- Decouples conductivity from other requirements
- Kynar[®] PVDF
 - Chemical and electrochemical stability
 - Mechanical strength
 - Excellent barrier against methanol
- Polyelectrolyte
 - H⁺ conduction and water uptake
- Robust blending process
 - PVDF can be compatibilized with a large range of polyelectrolytes
 - Morphology and physical property control
 - Phase separation on a scale of 10-100s of nm

Lower cost approach compared to PFSA

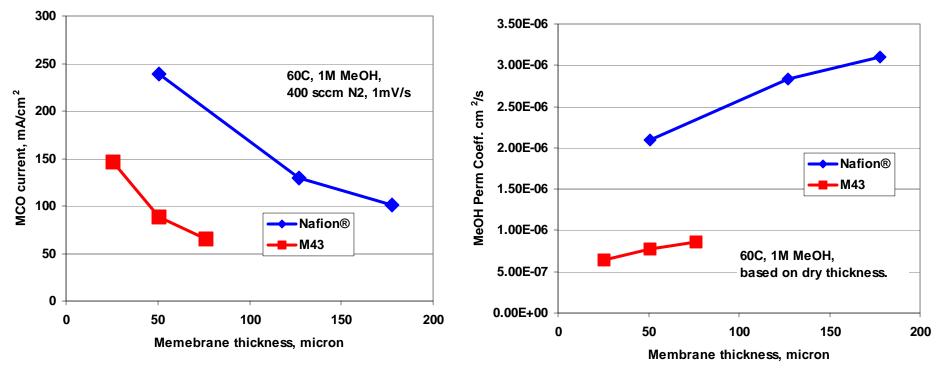
- Kynar[®] PVDF commercial product
- Polyelectrolyte hydrocarbon based



Technical Approach: Membrane Development

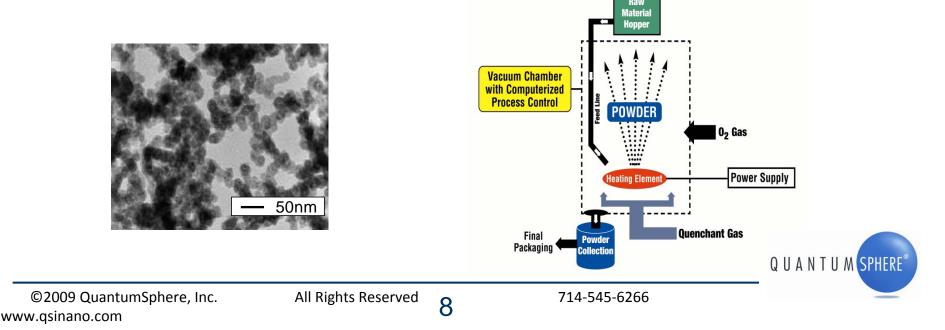
The key to the desired properties resides in careful control of composition, architecture, and morphology of the membrane components.

- Phase separation on the order of 10s of nm
 - Polymer architecture, composition, and type of compatibilizer
- PVDF matrix optimization
 - Degree of crystallinity
- Tailor the polyelectrolyte composition to minimize methanol permeation in this phase
 - Different acid and ion-containing groups
- Acidic inorganic additives
 - Reduce swelling in the membrane while maintaining conductivity



Preliminary Data: M43 Methanol Crossover

Conductivity: 140 mS/cm (1 mil) @ 70 °C (in DI Water)



- M43 was developed for hydrogen applications
- Without any optimization, M43 is already a good methanol barrier

Technical Approach: Methanol Tolerant Cathode Catalyst

- Pd based alloy nanocatalyst mixed with Pt/C
 - Improved mass activity by suppressing methanol oxidation
 - Significant cost reduction by lower Pt content
 - Particle size = 3-10nm
- Pd-based nanocatalysts prepared using gas phase condensation
 - Control of particle size, alloy ratio, and core-shell structure
- Catalysts screening by rotating disk voltammetry, in presence and absence of methanol

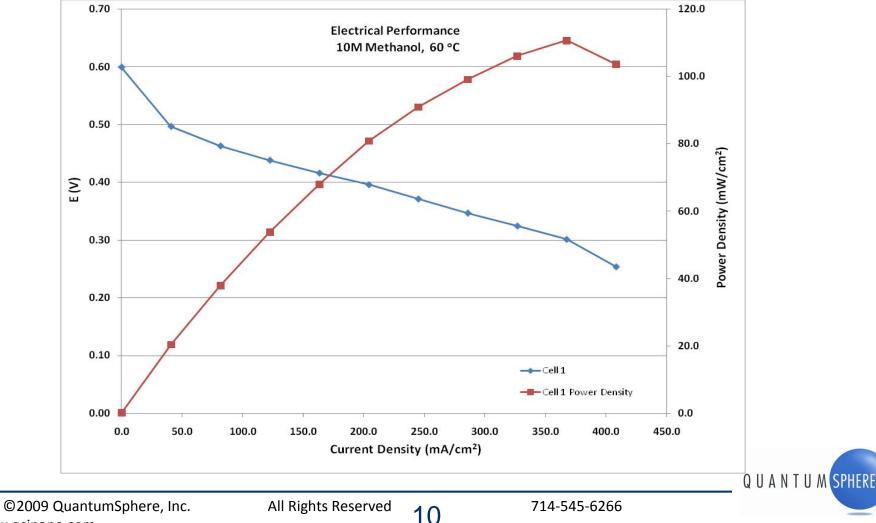
Technical Approach: MEA Testing

MEA development and characterization (QSI)

- Optimize catalyst layer composition/construction
 - Ionomer content
 - GDE vs CCM

MEA diagnostics (IIT, Arkema, QSI)

- Single cell polarization with 1-10M methanol/air
- Anode and cathode half-cell polarization measurement using reference electrode
- Linear sweep voltammetry and CO₂ sensor to monitor methanol crossover
- Cyclic voltammetry for catalyst active area
- In-situ AC impedance for MEA resistance and transport resistances.


MEA durability testing (Arkema, IIT, QSI)

• Constant current mode, monitoring voltage loss over time.

Preliminary Results: MEA Performance

Arkema M43 Low Crossover Membrane, QSI-Nano[®] Methanol Tolerant Cathode Catalyst (10M Methanol, 60 °C)

www.qsinano.com

Proposed Project Timeline

Project start: January, 2010

Task Name	1Q01	2Q01	3Q01	4Q01	1Q02	2Q02	3Q02	4Q02	1Q03	2Q03	3Q03	4Q03
Membrane		:		:	G1 [<u> Dį</u>	:		:		D5	
Catalyst					G2	D2	D3					
MEA Development								M'I	[D4		
MEA Testing/Durability									-			D6

- G1: Membrane w/ areal resistance $\leq 0.080 \ \Omega \text{ cm}^2$ and a diffusion coefficient $\leq 1.10^{-7} \text{ cm}^2/\text{s}$
- G2: Catalyst w/mass activity > 70 mW/mg
- D1: Membrane scale-up for MEA development
- D2: Catalyst scale-up for MEA development
- D3: MEA w/ 50% Pt reduction and mass activity > 100 mW/mg
- M1: MEA w/ ohmic resistance < $0.12 \Omega \text{cm}^2$ (determined from impedance)
- D4: MEA performance of 150 mW/cm² @ 0.4 V (60 °C, 1 M methanol)
- D5: Membrane w/ areal resistance $\leq 0.080 \ \Omega \text{cm}^2$ and a diffusion coefficient $\leq 5 \cdot 10^{-8} \text{ cm}^2/\text{s}$
- D6: MEA passes 5,000 h durability testing

Proposed Project Budget

• Assuming start-up date Jan. 2010

- Total Project Cost: \$3,501,264
 - Non-federal: \$867,530
 - Federal: \$2,633,734

	FY2010	FY2011	FY2012	FY2013
Non-federal	\$232,667	\$281,129	\$282,523	\$71,211
Federal	\$706,355	\$853,478	\$857,713	\$216,188
Total project	\$939,022	\$1,134,607	\$1,140,236	\$287,399

