Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes

Andrew M. Herring
Colorado School of Mines
DE-PS36-05GO95020
5/19/06

This presentation does not contain any proprietary or confidential information

Unique Approach

- Materials Synthesis based on HPA Monomers - Immobilization
- Novel "High and Dry" proton conduction pathways mediated by organized HPA moieties - Organization
- 3M will bring additional synthetic expertise and direct later stages of project towards manufacturability - Membranes

Excellent H⁺ Conductivity at

• 12-HPW/PVDF-HFP, 30 μ m, Dry Gases, 0.5 I min⁻¹, H₂/O₂, RT.

Poor H⁺ Conductivity > 100°C

• 18-HP₂W/PVDF-HFP, 30 μm, 25% RH, 0.5 I min⁻¹, H₂/O₂, 120°C.

Fast H⁺ Diffusion > 100°C

HPA	Max	Temperature of	Ea before	Secondary structure	
	diffusion	maximum D,	Max T, kJ		
	coefficent x	°C	mol^{-1}		
	$10^{-6} \text{ cm}^2 \text{s}^{-1}$				
12-HPW	25	117	13	$H^+(H_2O)_x$	cubic
12-HSiW	30	130	20	$H^+(H_2O)_x$	cubic
12-HZnW	2	108	27	$H_5O_2^+, OH$	cubic
12-HGeW	0.7	90	35		cubic
11-SiW 11	3	108	6	$H_5O_2^+, OH$	cubic
39-HB3W	7	128	8	$H^+(H_2O)_x$	sheets
18-HP2W	1.2	>150	20	H_3O^+	triclinic
21-HAs2W	3.7	>150	18	$H_5O_2^+$	
21-H ₂ Rb ₄ As2W	30	25	-	$H^+(H_2O)_x$	channels
21-HP2W	2.3	110	24	H_3O^+	

- For Keggin anions E_a increases and D decreases as the heteroatom becomes heavier
- More complex for less symmetrical anions

Low H⁺ Availability > 100°C

 As Temperature increases more H⁺ become strongly associated with anion

Extensive HPA Chemistry Available

- Extensive linkage chemistry available
- M = P, Si, Ge, Sn
- R, R' = monomer

Lacunary HPA allow

easy attachment points

