Novel Approaches to Immobilized Heteropoly Acid (HPA) Systems for High Temperature, Low Relative Humidity Polymer-Type Membranes Andrew M. Herring Colorado School of Mines DE-PS36-05GO95020 5/19/06 This presentation does not contain any proprietary or confidential information #### Unique Approach - Materials Synthesis based on HPA Monomers - Immobilization - Novel "High and Dry" proton conduction pathways mediated by organized HPA moieties - Organization - 3M will bring additional synthetic expertise and direct later stages of project towards manufacturability - Membranes ## Excellent H⁺ Conductivity at • 12-HPW/PVDF-HFP, 30 μ m, Dry Gases, 0.5 I min⁻¹, H₂/O₂, RT. #### Poor H⁺ Conductivity > 100°C • 18-HP₂W/PVDF-HFP, 30 μm, 25% RH, 0.5 I min⁻¹, H₂/O₂, 120°C. #### Fast H⁺ Diffusion > 100°C | HPA | Max | Temperature of | Ea before | Secondary structure | | |--|--------------------------------------|----------------|------------|---------------------|-----------| | | diffusion | maximum D, | Max T, kJ | | | | | coefficent x | °C | mol^{-1} | | | | | $10^{-6} \text{ cm}^2 \text{s}^{-1}$ | | | | | | 12-HPW | 25 | 117 | 13 | $H^+(H_2O)_x$ | cubic | | 12-HSiW | 30 | 130 | 20 | $H^+(H_2O)_x$ | cubic | | 12-HZnW | 2 | 108 | 27 | $H_5O_2^+, OH$ | cubic | | 12-HGeW | 0.7 | 90 | 35 | | cubic | | 11-SiW 11 | 3 | 108 | 6 | $H_5O_2^+, OH$ | cubic | | 39-HB3W | 7 | 128 | 8 | $H^+(H_2O)_x$ | sheets | | 18-HP2W | 1.2 | >150 | 20 | H_3O^+ | triclinic | | 21-HAs2W | 3.7 | >150 | 18 | $H_5O_2^+$ | | | 21-H ₂ Rb ₄ As2W | 30 | 25 | - | $H^+(H_2O)_x$ | channels | | 21-HP2W | 2.3 | 110 | 24 | H_3O^+ | | - For Keggin anions E_a increases and D decreases as the heteroatom becomes heavier - More complex for less symmetrical anions ### Low H⁺ Availability > 100°C As Temperature increases more H⁺ become strongly associated with anion # Extensive HPA Chemistry Available - Extensive linkage chemistry available - M = P, Si, Ge, Sn - R, R' = monomer Lacunary HPA allow easy attachment points