Non-carbon mixed-conducting materials for PEFC electrocatalysts and electrodes

2010 DOE Hydrogen Program Fuel Cell Project Kick-Off

P. I. Vijay K. Ramani Illinois Institute of Technology, Chicago September 28, 2010

This presentation does not contain any proprietary, confidential, or otherwise restricted information

Overview

Timeline

- Project start date: Sept. 1st 2010
- Project end date: Aug. 31st 2013
- Percent complete: < 5%

Budget

- Total project funding
 - DOE share: \$ 1,476,230
 - Contractor share: \$415,775
- Funding assigned to date: \$ 300,000

Barriers

- Barriers addressed:
 - Fuel Cell component durability to be improved
- Targets addressed
 - < 40% ECA Loss</p>
 - < 30% electrocatalyst support loss</p>

Partners

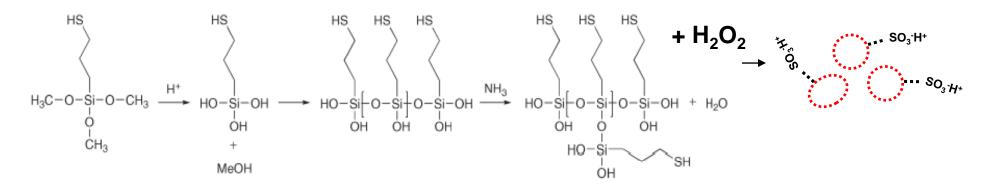
- Nissan Technical Center, North America
- Project lead: Illinois Institute of Technology

Relevance

• Objectives:

- 1) to develop and optimize non-carbon mixed conducting materials that will serve as corrosion resistant, high surface area supports for anode and cathode electrocatalysts;
- 2) concomitantly facilitate the lowering of ionomer loading in the electrode (by virtue of surface proton conductivity of the electrocatalyst support), thereby enhancing performance.

• Relevance:


- Addresses the issue of electrocatalyst and support stability, both of which are important in the context of fuel cell durability
- The development of stable, non-carbon supports will help address technical targets for operational lifetime, ECA loss and electrocatalyst support loss.

Approach

• Starting with a high surface area metal oxide

- Silica/titania used as a model metal oxide
- Ruthenium oxide used as model electron conducting functionality
- Sulfonic acid groups introduced to provide proton conductivity
- Project sub-divided into 5 Tasks
 - IIT will focus on materials synthesis and characterization
 - NTCNA will focus on durability/performance testing and cost model

Approach

•Sulfonic acid functionalized silica with a multimodal pore structure will be synthesized

- TEOS/MPTMS used as precursors
- •Traditional sol-gel processing

•RuO₂ introduced into micro/meso pores; macropores preserved for gas transport

•Metal – thiol interactions exploited to place platinum precursor right next to the sulfonic acid group.

Approach – List of Tasks

- Task 1: Optimization of functionalized metal oxide
- Task 2: Durability of functionalized metal oxide supports under relevant stresses
- Task 3: Ionomer loading reduction studies
- Tack A. Dovalaning MFAs with antimized structures for DOF
- Task 5: Developing a formal cost estimate

- Synthesize silica and sulfonic acid functionalized silica with a bimodal pore structure
 - Sol gel methods, with supercritical drying
- Introduce electronic conductivity by incorporating an interconnected network of ruthenium oxide wires into mesopores
- Catalyze support with Pt
- Examine evolution of mirostructure and properties at each stage as a function of processing
- Experimental methods listed on following slides

Microstructure Characterizat Experiment / Apparatus	Microstructural Attribute						
N2 physisorption	Pore size distribution						
N2 physisorption	Pore volume						
N2 physisorption	BET surface area						
CO chemisorption	Pt surface area						
TEM/AFM	Pt particle size						
XRD	Crystallite size						
FTIR spectroscopy, XPS	Surface functionality						
Transport Property Estimation	n						
Experiment/Apparatus	Transport Property						
Impedance spectroscopy	Proton and electron conductivity						
DC resistance	electron conductivity						
Gas diffusion / permeation	Oxygen diffusion coefficient in air						

Ex-situ Estimation of Electrochemical Figures of Merit							
Experiment/Apparatus	Fig. of merit (ex-situ)						
V-I polarization (RDE)	Mass/area specific catalytic activity						
Cyclic voltammetry (RDE)	Electrochemically active surface area (ECA						
Potential cycling (RDE)	Support corrosion current						
Potential cycling (RDE)	ECA loss due to support /catalyst corrosior						
In-situ Estimation of Electrochemical Figures of Merit							
Experiment/Apparatus	Fig. of merit (in-situ)						
Cyclic voltammetry (MEA)	Electrochemically active surface area (ECA						
Cyclic voltammetry (MEA)	ECA loss due to support /catalyst corrosior						
V-I polarization (MEA)	Mass/area specific activity						
V-I polarization (MEA)	Limiting current (Transport property)						
V-I polarization (MEA)	Electrode ohmic resistance (Re)						
V-I polarization (MEA)	Tafel slope (Kinetic property)						

Table 2.

- Study effect of accelerated durability testing on microstructure and properties of chosen multi-functional materials.
- The following questions will be addressed:
 - How does corrosion due to potential cycling affect material microstructure and hence properties?
 - How does the presence of oxygen or hydrogen in the potential cycling environment influence corrosion rate?
 - How does the presence/absence of platinum electrocatalyst influence corrosion rate?
 - How does temperature, RH and freeze-thaw cycling affect structure and properties?

- Accelerated test protocols (both ex-situ and in-situ) will be used to test both catalyzed and uncatalyzed supports
 - Start-up and shut-down (cycling between 1V and 1.5V at 0.5V/s for up to 1000 cycles)
 - Load cycling (between 0.95 V and 0.6V under load for up to 10,000 cycles)
- In-situ tests will be performed on sub-scale MEAs prepared using catalyzed supports
 - The newly developed supports will be tested at:
 - the anode only (with traditional cathode)
 - at the cathode only (with traditional anode)
 - and at both electrodes
 - Stability and performance in reducing and oxidizing environments will be identified.

- For the catalyzed supports:
 - the effect of platinum content on the rate of support corrosion will be monitored
 - the rate of catalyst particle dissolution during accelerated testing will be monitored.
- For both catalyzed and uncatalyzed supports:
 - materials will be subjected to detailed characterization using the experimental techniques specified earlier prior to, during and after the accelerated degradation test protocols
 - mechanism of degradation will be studied
- Results will be benchmarked against the recognized standards in the automotive industry for catalyzed and uncatalyzed supports.

- The questions addressed in this task are:
 - How does support surface functionalization with sulfonic acid groups affect:
 - catalyst utilization, and
 - kinetic and transport properties within the electrode?
 - Does support surface functionalization with sulfonic acid permit:
 - the use of lower amounts of PCMs in the electrode?
 - more efficient electrode microstructure?

- To address the first question:
 - MEAs will be prepared with materials that differ only in the extent of surface functionalization with sulfonic acid groups.
 - The MEAs will be tested at 80°C and 75% RH (standard fuel cell operating conditions).
 - Key kinetic and transport parameters will be ascertained through analysis of polarization data.
 - The influence of extent of sulfonic acid functionalization on utilization, kinetic, and transport properties will be ascertained.
 - The experiments will be repeated with different loadings of the PCM, starting with a binder free electrode, and progressing to high PCM loadings (~ 30 wt%).

- To address the second question:
 - MEAs will be prepared with materials having identical extents of sulfonic acid functionalization.
 - Different PCM loading will be employed for each MEA, and the microstructure of each electrode characterized using microscopy and nitrogen desorption studies.
 - Kinetic and transport figures of merit and electrocatalyst utilization will be estimated and related to electrode microstructure.
- This task will provide insights into the interplay between surface functionalization, effective thickness of PCM binder in the electrode, and resultant kinetic and transport properties.

- In the final year of the program, IIT, in conjunction with NTCNA, will identify the best performing and most durable catalyzed mixed-conducting supports that result from this study.
- We will provide at least 6 ~ 100 cm² active area MEAs and test results obtained in our laboratory to DOE for third-party testing
- The actual MEA dimensions will be decided in consultation with DOE and the testing party.

- A formal cost estimate in terms of \$/kW for the uncatalyzed and catalyzed support materials developed will be prepared.
- The estimates will be developed in conjunction with accepted economy-of-scale factors incorporated into the model.
- This cost estimate will be delivered to DOE at the end of the program.

Deliverables

• **Project deliverables**:

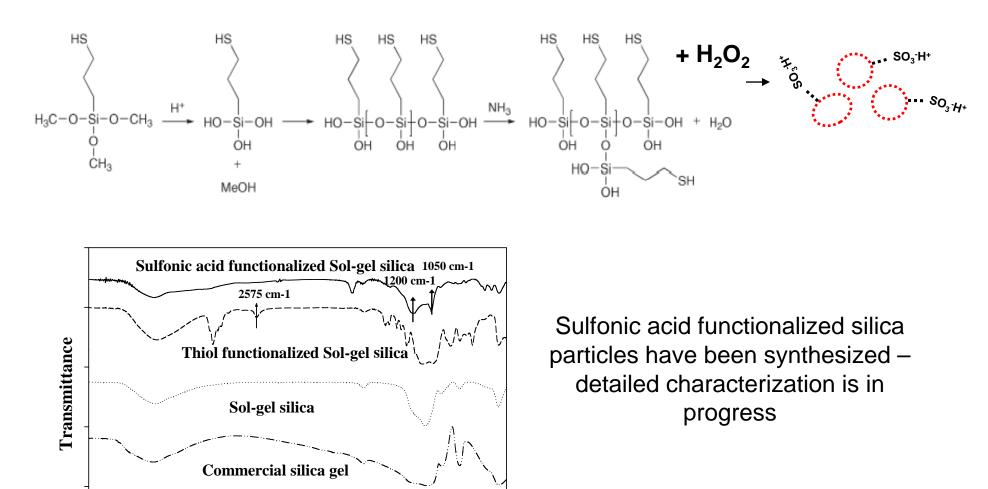
- — 1) Optimized ~ 100 cm² MEAs (at least 6, with the optimized support/electrode at the anode only, cathode only and at both electrodes) demonstrating the best performance and durability to DOE for independent third party testing;
- 2) Formal cost estimate for both catalyzed and uncatalyzed supports.

Milestones

• Phase 1 Tasks and Milestones:

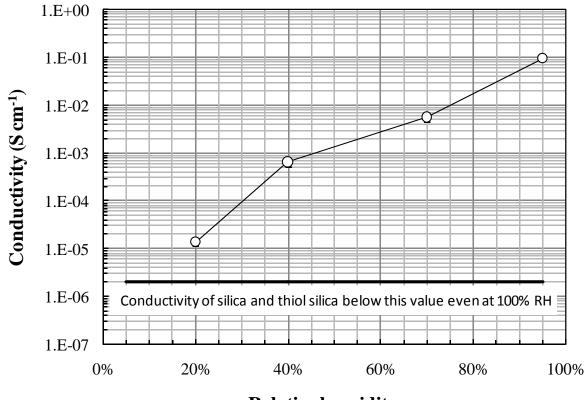
- Substantially complete Task 1 and initiate and partially complete task
 2.
- Down-select sub-set of metal oxide based mixed-conducting supports with superior properties (aim for 0.07 S/cm proton conductivity and 2 S/cm electron conductivity; 50 m²/g surface area) for advanced testing (both ex-situ and in-situ) at IIT and NTCNA.

Milestones


• Phase 2 Tasks and Milestones:

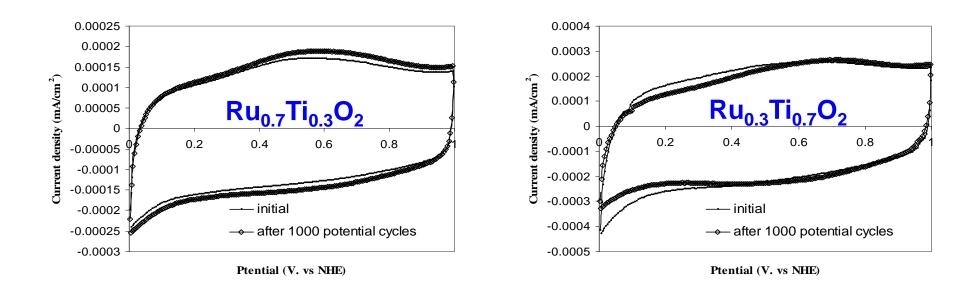
- Complete Tasks 1 3 in the first 4 quarters of period 2.
- Further enhance proton and electron conductivity to aim for 0.1S/cm and 5 S/cm respectively.
- Down-select 1-2 mixed-conducting supports with the best combination of performance and durability
- Prepare and evaluate performance and durability of an MEA with the down-selected catalyzed mixed-conducting supports with a platinum loading of 0.2 mg/cm².
- Prepare 6 MEAs with optimal support and ionomer formulations for delivery to DOE and also formalize cost model (tasks 4, 5).

Go/No Go Criteria


- This criterion is based on requirements in terms of conductivity and stability for an experimental non-carbon support.
- It will be applied towards the end of Phase I.
- The criterion is:
 - "At the end of Phase I, IIT and NTCNA will have prepared or showed significant progress towards preparing a support material with a surface area of 50 m²/g; an electron conductivity of 2 S/cm, a proton conductivity of 0.07S/cm and durability in acidic electrolyte of 1000 cycles per the defined accelerated test protocols".

Technical Accomplishments

Wave number (cm⁻¹)


Technical Accomplishments

Relative humidity

Sulfonic Acid functionalized silica shows respectable pellet conductivities

Technical Accomplishments

RTOs possess high stability upon cycling between 0 and 1.8 V.

Collaborations

- Project collaborations:
 - Nissan Technical Center, North America
 - PI Dr. Kev Adjemian
- NTCNA is a sub-contractor from industry
- The collaboration is essentially on a 50-50 basis
 - 50% of federal funds are assigned to sub-contract
 - The project tasks will be performed in an integrated manner.
- Annual mutual visits are planned
 - IIT PI/Student visits to NTCNA
 - NTCNA post-doc visits to IIT
 - NTCNA PI visited in July.

Proposed future work

Period (18 months) \rightarrow			1							2		
Period (Quarter) \rightarrow	Q1	Q2	Q3	Q4	Q5	Q6	Q1	Q2	Q3	Q4	Q5	Q6
Task ↓												
Task 1 – optimization of support												
Task 2 – durability of support												
Task 3 – ionomer loading studies												
Task 4 – MEAs for delivery												
Task 5 – cost model for deliverv												

- In FY-11, will focus largely on Task 1 optimization of the support material
 - •IIT will synthezise materials
 - •IIT and NTCNA will characterize materials
 - •Microstructure-property relationships obtained will guide selection of formulations for advanced durability studies (Task 2).

Summary Slide

- **Relevance**: Proposed work will lead to non-carbon supports with high durability and address support loss/ECA targets
- **Approach**: Mixed-conducting supports derived from high surface metal oxides (silica/titania functionalized with sulfonic acid groups and conducting oxides) will be synthesized and optimized. Detailed durability tests will be performed.

• Accomplishments/Progress:

- sulfonic acid functionzlized silica and ruthenium oxide functionalized titania (RTO) have been synthesized
- RTO has excellent durability on potential cycling
- Collaborations · IIT is load and will work with subcontractor
- Proposed work for FY 11: Substantially complete synthesis/characterization of mixed-conducting supports and initiate durability tests (Tasks 1 and 2).

Supplemental Slides